235-Ch5-1-Induction离散数学英文版.ppt

上传人:99****p 文档编号:1584723 上传时间:2019-03-06 格式:PPT 页数:34 大小:570.50KB
下载 相关 举报
235-Ch5-1-Induction离散数学英文版.ppt_第1页
第1页 / 共34页
235-Ch5-1-Induction离散数学英文版.ppt_第2页
第2页 / 共34页
235-Ch5-1-Induction离散数学英文版.ppt_第3页
第3页 / 共34页
235-Ch5-1-Induction离散数学英文版.ppt_第4页
第4页 / 共34页
235-Ch5-1-Induction离散数学英文版.ppt_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、Chapter 5: Induction and Recursion (Part 1)Elements of Discrete Structures Climbing an Infinite LadderWe can reach step 1.If we can reach step k, we can reach step k + 1.Then, we can reach any step nMathematical Induction For a propositional function P(n) and any integers n b, b is a starting value

2、of n in N (Basis Step) we prove: P(b) is true (Inductive Step) and we prove P(k) P(k+1) for any positive integer k Conclusion: P(n) is true Formally:P(b) kZ+(P(k) P(k+1) nN P(n)Understanding Mathematical Induction Let n be 100. Then, is P(100) true? We may use “modus ponens” 99 times. We can then sa

3、y, yes.P(1) (we prove P(1) is true)P(1) P(2) (k = 1, P(k) P(K+1)P(2) (modus ponens)P(2) P(3) (k = 2, P(k) P(K+1)P(3) (modus ponens)P(99)P(99) P(100) (k = 99, P(k) P(K+1)P(100) (modus ponens)Remembering How Mathematical Induction WorksConsider an infinite sequence of dominoes, labeled 1, 2, 3, , wher

4、e each domino is standing. We know that the first domino is knocked down, i.e., P(1) is true .We also know that if whenever the kth domino is knocked over, it knocks over the (k + 1)st domino, i.e, P(k) P(k + 1) is true for all positive integers k. Let P(n) be the proposition that the nth domino is

5、knocked over. Hence, all dominos are knocked over.P(n) is true for all positive integers n.Induction Examples for Summation Example 1. Prove that the equation is trueP(n): 1 + 2 + 3 + + n = n(n + 1)/2 Proof by induction (on blackboard) Example 2. Prove that the equation is trueP(n): 1 + 3 + 5 + . +

6、(2n 1) = n2 Proof by induction (on blackboard) Example 3. Prove that the equation is trueP(n): a + ar1 + ar2 + + ar n = (arn+1 a)/(r 1) Proof by induction (on blackboard)Inequality Example Prove that n 2n for positive integers n. Basis step: P(1): 1 21 Inductive step: assume P(k) is correct, prove P

7、(k+1) is correct, for all positive k.k 2k (assumption)k+1 2k + 1 (from assumption) 2k + 2k = 2k+1Inequality Example Prove that 2n n! for integers n 4 Basis step: P(4) = 24 = 16 4! = 4321 = 24 Inductive step: Assume 2k k! for k 4, then 2k+1 = 22k 2k! (k + 1)k! = (k + 1)! So, 2k+1 (k + 1)! Harmonic nu

8、mbers Hj, j = 1, 2, 3, . are defined by Prove that Basis step: when n =1, Inductive step: Continued on the blackboard Harmonic NumbersDivisibility Example Prove that n3 n is divisible by 3 for all positive integer n Basis step: when n = 1, 13 1 = 0, 3 | 0 Inductive step: when n = k, if k3 k is divisible by 3, then k3 k = 3m for some integer m. For n = k + 1, (k + 1)3 (k + 1) = k3 + 3k2 + 3k k= k3 k + 3(k2 + k) = 3m + 3(k2 + k)= 3(m + k2 + k). So (k + 1)3 (k + 1) is divisible by 3

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 课件讲义

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。