统计学原理作业三参考答案.doc

上传人:h**** 文档编号:162800 上传时间:2018-07-12 格式:DOC 页数:9 大小:196.50KB
下载 相关 举报
统计学原理作业三参考答案.doc_第1页
第1页 / 共9页
统计学原理作业三参考答案.doc_第2页
第2页 / 共9页
统计学原理作业三参考答案.doc_第3页
第3页 / 共9页
统计学原理作业三参考答案.doc_第4页
第4页 / 共9页
统计学原理作业三参考答案.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、 1 统计学原理作业(三) (第五第七章) 一、判断题 1、抽样推断是利用样本资料对总体的数量特征进行估计的一种统计分析方法,因此不可避免的会产生误差,这种误差的大小是不能进行控制的。( ) 2、从全部总体单位中按照随机原则抽取部分单位组成样本,只可能组成一个样本。( ) 3、抽样估计的置信度就是表明抽样指标和总体指标的误差不超过一定范围的概率保证程度。( ) 4、在其它条件不变的情况下,提 高抽样估计的可靠程度,可以提高抽样估计的精确度。( ) 5、抽样极限误差总是大于抽样平均误差。( ) 6、相关系数是测定变量之间相关关系的唯一方法( ) 7、甲产品产量与单位成本的相关系数是 -0.8,乙

2、产品单位成本与利润率的相关系数是 -0.95,则乙比甲的相关程度高 ( )。 8、 利用一个回归方程,两个变量可以互相推算( )。 9、估计标准误指的就是实际值 y 与估计值 yc 的平均误差程度( )。 10、抽样误差即代表性误差和登记性误差,这两种误差都是不可 避免的。 ( ) 11、总体参数 区间估计必须具备的三个要素是估计值、抽样误差范围、概率保证程度。( ) 12、在一定条件下,施肥量与收获率是正相关关系。( ) 二、单项选择题 1、在一定的抽样平均误差条件下( A )。 A、扩大极限误差范围,可以提高推断的可靠程度 B、扩大极限误差范围,会降低推断的可靠程度 C、缩小极限误差范围,

3、可以提高推断的可靠程度 D、缩小极限误差范围,不改变推断的可靠程度 2、反映样本指标与总体指标之间的平均误差程度的指标是( C )。 A、抽样误差系数 B、概率度 C、抽样平均误差 D、抽样极限误差 3、抽样平均误差是( C )。 A、全及总体的标准差 B、样本的标准差 C、抽样指标的标准差 D、抽样误差的平均差 4、当成数等于( C )时,成数的方差最大。 A、 1 B、 0 c、 0.5 D、 -1 2 5、对某行业职工收入情况进行抽样调查,得知其中 80%的职工收入在 800 元以下,抽样平均误差为 2%,当概率为 95.45%时,该行业 职工收入在 800 元以下所占比重是( C )。

4、 A、等于 78% B、大于 84% c、在此 76%与 84%之间 D、小于 76% 6、对甲乙两个工厂工人平均工资进行纯随机不重复抽样调查,调查的工人数一样,两工厂工资方差相同,但甲厂工人总数比乙厂工人总数多一倍,则抽样平均误差( A )。 A、甲厂比乙厂大 B、乙厂比甲厂大 C、两个工厂一样大 D、无法确定 7、反映抽样指标与总体指标之间抽样误差可能范围的指标是( B )。 、抽样平均误差;、抽样极限误差 ;、抽样误差系数;、概率度。 8、 如果变量 x 和变量 y 之间的相关系数为 1 ,说明两变量之间 ( D )。 A、不存在相关关系 B、相关程度很低 C、相关程度显著 D、完全相关

5、 9、一般说 ,当居民的收入减少时 ,居民的储蓄款也会相应减少 ,二者之间的关系是 (A )。 A、直线相关 B、完全相关 C、非线性相关 D、复相关 10、年劳动生产率 x(千元 )和工人工资 y(元 )之间的回归方程为 yc=30+60x ,意味着劳动生产率每提高 2 千元时 ,工人工资平均增加 ( B )。 A、 60 元 B、 120 元 C、 30 元 D、 90 元 11、如果变量 x 和变量 y 之间的相关系数为 -1,说明两个变量之间是( B ) A、高度相关关系 B、完全相关关系 C、完全不相关 D、低度相关关系 12、价格不变的条件下,商品销售额和销售量之间存在着( D )

6、。 A、不完全的依存关系 B、不完全的随机关系 C、完全的随机关系 D、完全的依存关系 三、多项选择题 1、影响抽样误差大小的因素有( ABCD )。 A、抽样调查的组织形式 B、抽取样本单位的方法 C、总体被研究标志的变异程度 D、抽取样本单位数的多少 E、总体被研究标志的属性 2、在抽样推断中( ACD )。 A、抽样指标的数值不是唯一的 B、总体指标是一个随机变量 C、可能抽取许多个样本 D、统计量是样本变量的涵数 E、全及指标又称为统计量 3 3、从全及总体中抽取样本单位的方法有( BC )。 A、简单随机抽样 B、重复抽样 c、不重复抽样 D、概率 抽样 E、非概率抽样 4、在抽样推

7、断中,样本单位数的多少取决于( ABCE )。 A、总体标准差的大小 B、允许误差的大小 C、抽样估计的把握程度 D、总体参数的大小 E、抽样方法 5、总体参数区间估计必须具备的三个要素是( BDE )。 A、样本单位数 B、样本指标 c、全及指标 D、抽样误差范围 E、抽样估计的置信度 6、在抽样平均误差一定的条件下( AD )。 A、扩大极限误差的范围,可以提高推断的可靠程度 B、缩小极限误差的范围,可以提高推断的可靠程度 C、扩大极限误差的范围,只能降低推断的可靠程度 D、缩小极限误差的范围,只能降低推断的可靠程度 E、扩大或缩小极限误差范围与推断的可靠程度无关 7、判定现象之间有无相关

8、关系的方法是( ABCD )。 、对客观现象作定性分析 、编制相关表 、绘制相关图 、计算相关系数 、计算估计标准误 8、相关分析特点有 ( BCDE )。 A.两变量不是对等的 B.两变量只能算出一个相关系数 C.相关系数 有正负号 D.两变量都是随机的 E.相关系数的绝对值介于 0 和 1 之间 9、下列属于负相关的现象是 ( ABD )。 A、商品流转的规模愈大 ,流通费用水平越低 B、流通费用率随商品销售额的增加而减少 C、国民收入随投资额的增加而增长 D、生产单位产品所耗工时随劳动生产率的提高而减少 E、某产品产量随工人劳动生产率的提高而增加 10、变量 x 值按一定数量增加时 ,变

9、量 y 也近似地按一定数量随之增加 ,反之亦然 ,则 x 和 y 之间存在 ( AB )。 A、正相关关系 B、直线相关关系 C、 负相关关系 D、曲线相关关系 E、非线性相关关系 4 四、简答题 1、 举例说明总体、样本、参数、统计量、变量这几个概念。 答题要点: 对 1000 个灯泡进行寿命测试,那么 1000 个灯泡就是总体,从中抽取 100个进行检测,这 100 个灯泡的集合就是样本,这 1000 个灯泡 的寿命的平均值和标准差、还有合格率等描述特征的数值就是参数,这 100 个灯泡的寿命的平均值和标准差、还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡

10、的寿命。 2、什么是抽样平均误差和抽样极限误差?二者 有何关系?写出二者的计算公式。 答题要点:抽样平均误差是反映抽样误差一般水平的指标;而抽样极限误差是反映抽样误差的最大范围的指标,二者既有联系又有区别。 二者的联系是:极限误差是在抽样平均误差的基础上计算得到的,即 tu 。 二者的区别是:( 1)二者涵义不同;( 2)影响误差大小的因素不同;( 3)计算方法不同。 抽样平均误差的计算: 重复抽样:nux n ppux )1( 不重复抽样: )1(2 Nnnux )1()1( Nnn ppux 抽样极限误差的计算: xtux ptup 3、解释相关关系的含义,说明相关关系的特点。 相关关系是

11、一种不完全确定的随机关系,在相关关系的情况下,因素标志的每个数值都可能有若干个结果标志的数值与之对应。因此,相关关系是一种不完全的依存关系。 相关关系的特点 : ( 1) 现象之间确实存在着数量上的依存关 系;( 2)现象之间数量上的关系是不确定、不严格的依存关系 4、请写出计算相关系数的简要公式,并说明相关系数的取值范围及其判断标准。 答题要点: 计算相关系数的简化式: 相关系数的数值范围是在 -1 和 +1 之间,即 0,11 rx 为正相关, 0r 为负相关。 判断 标准: 3.0r 为微弱相关; 5.03.0 r 为低度相关; 8.05.0 r 为显著相关;18.0 r 为高度相关;

12、0r 时,不相关, 1r 时完全相关。 5、拟合回归方程 bxayc 有什么前提条件?写出参数 ba, 的计算公式并解释经济含义。 2222 yynxxn yxxyn5 答题要点: 拟合直线回归方程的要求是 (1)两变量之间确实存在线性相关关系; (2) 两变量相关的密切程度必须显著;( 3)找到合适的参数 ba, ,使所确定的回归方程达到 使 实际的 y值与对应的理论值 cy 的离差平方和为最小。 回归方程 bxayc 中参数 ba, 的计算公式: xbyaxxn yxxynb ,82.1)( 22 ba, 经济含义:( 1)回归方程中参数 a 代表直线的起点值,在数学上称为直线 的纵轴截距

13、,它表示 0x 时 y 的常数项。( 2)参数 b 称为回归系数,表示自变量 x 增加一个单位时因变量 y 的平均增加值。回归系数的正负号与相关系数是一致的,因此可以从回归系数的正负号判断两变量相关的方向。 五 、计算题 1、外贸公司出口一种食品, 规定每包规格不低于 150 克,现在用重复抽样的方法抽取其 中的 100 包进行检验,其结果如下: 每包重量(克) 包 数 148 149 149 150 150 151 151 152 10 20 50 20 100 要求:( 1)以 99.73%的概率估计这批食品平均每包重量的范围,以便确定平均重量是否达到规格要求; ( 2)以同样的概率保证估

14、计这批食品合格率范围。 解: 7.010070 p 3.1501001 5 0 3 0 fxfx 87.02 ffxx 08 7.010 087.0 nx 6 2 6 1.00 8 7.03 tx 561.15004.150261.03.150 ,即 xx 0458.0)1( n ppp 1 3 7 4.00 4 5 8.03 pp t 8 3 7 4.05 6 2 6.01 3 7 4.07.0 ,即 pp 2、单位按简单随机重复抽样方式抽取 40 名职工,对其业务情况进行考核,考核成绩资料如下: 68 89 88 84 86 87 75 73 72 68 75 82 99 58 81 54

15、 79 76 95 76 71 60 91 65 76 72 76 85 89 92 64 57 83 81 78 77 72 61 70 87 要求:( 1)根据上述资料按成绩分成以下几组: 60 分以下, 60 70 分, 70 80 分, 80 90分, 90 100 分,并根据分组整理成变量分配数列 ;( 2)根据整理后的变量数列,以 95.45%的概率保证程度推断全体 职工业务考试成绩的区间范围 ;( 3)若其它条件不变,将允许误差范围缩小一半,应抽取多少名职工? 解: 成绩 组中值 人数 比重 60 分以下 55 3 7.5 60 70 65 6 15 70 80 75 15 37

16、.5 80 90 85 12 30 90 100 95 4 10 合计 40 100 )(77403 0 8 0 分 fxfx )(54.104044402 分 ffxx 67.14054.10 nx 34.367.12 xx t 34.80,66.7334.377 xx 7 1609889.2 3664.444234.354.10422222 tn 3、采用简单重复抽样的方法,抽取一批产品中的件作为样本,其中合格品为件。要 求: ()计算样本的抽样平均误差 ()以的概率保证程度对该产品的合格品率进行区间估计() 解: %5.97200195 p 011.0200 025.0975.0)1(

17、n ppp022.0011.02 pp t 997.0,953.0022.0975.0 pp %7.99%3.95 p 4、某企业上半年产品产量与单位成本资料如下: 月 份 产 量 (千件) 单位成本(元) 要求:()计算相关系数,说明两个变量相关的密切程度。 ()配合回归方程 ,指出产量每增加件时,单位成本平均变动多少? ()假定产量为件时,单位成本为多少元? 产量 x 成本 y xy 2x 2y 2 73 146 4 5329 3 72 216 9 5184 4 71 284 16 5041 3 73 219 9 5329 8 4 69 276 16 4761 5 68 340 25 46

18、24 合计 426 1481 79 30268 91.066601 3 233 602222 yynxxn yxxynr bxayc 82.122 xxn yxxynb 37.77 xbya xy c 82.137.77 x=6 代入方程 )(45.66682.137.77 元cy 5、根据某地区历年人均收入 (元 )与商品销售额(万元)资料计算的有关数据如下 : (x 代表人均收入 ,y 代表销售额 ) n=9 x =546 y =260 2x =34362 xy =16918 计算 : (1)建立以商品销售额为因变量的直线回归方程 ,并解释回归系数的含义; (2)若 1996 年人均收为

19、400 元 ,试推算该年商品销售额 。 6、解:设回归方程表达式为 bxayc 92.01 1 1 4 21 0 3 0 222 xxn yxxynb 92.26954692.09260 xbya 当人均收入增加 1 元,销售额平均增加 0.92 万元 x=14000 代入 08.1 2 8 5 31 4 0 0 092.092.26 cy 7、某地区家计调 查资料得到 ,每户平均年收入为 8800 元 ,方差为 4500 元 ,每户平均年消费支9 出为 6000 元 ,均方差为 60 元 ,支出对于收入的回归系数为 0.8, 要求 : (1)计算收入与支出的相关系数; (2)拟合支出对于收入

20、的回归方程; (3)收入每增加 1 元 ,支出平均增加多少元。 解: 082.67x 8800x 60y 6000y 89.0600 8 2.678.0 yxbr 104088008.06000 xbya xyc 8.01040 收入每增加 1 元,支出平均增加 0.8 元。 8、某企业生产一批零件,随机重复抽取 400 只做使用寿命试验。测试结果平均寿命为 5000小时,样本标准差为 300 小时, 400 只中发现 10 只不合格。根据以上资料计算平均数的抽样平均误差和成数的抽样平均误差。 解:平均数的抽样平均误差为 154 0 03 0 0 nx (小时) 成数的抽样平均误差 为 0078.0400 )025.01(025.0)1( n ppx

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 复习参考

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。