大连工业大学大学物理学振动与波动题库.doc

上传人:h**** 文档编号:1691526 上传时间:2019-03-11 格式:DOC 页数:12 大小:825KB
下载 相关 举报
大连工业大学大学物理学振动与波动题库.doc_第1页
第1页 / 共12页
大连工业大学大学物理学振动与波动题库.doc_第2页
第2页 / 共12页
大连工业大学大学物理学振动与波动题库.doc_第3页
第3页 / 共12页
大连工业大学大学物理学振动与波动题库.doc_第4页
第4页 / 共12页
大连工业大学大学物理学振动与波动题库.doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、1振动与波动练习题一、选择题(每题 3 分)1、当质点以频率 作简谐振动时,它的动能的变化频率为 ( )(A) (B) (C) (D)2242、一质点沿 轴作简谐振动,振幅为 ,周期为 。当 时, 位移为 ,且向 轴正方向运x1cms0t6cmx动。则振动表达式为( )(A) (B ) 013.cost、 123x.cot、(C) (D )2x.t 0.st3、 有一弹簧振子,总能量为 E,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( ) (A)2E (B)4E (C)E /2 (D)E /4 4、机械波的表达式为 ,则 ( )0560y.cost.xm

2、() 波长为100 () 波速为10 -1() 周期为1/3 () 波沿x 轴正方向传播5、两分振动方程分别为 x1=3cos (50t+/4) 和 x2=4cos (50t+3/4),则它们的合振动的振幅为( )(A) 1 (B)3 (C)5 (D )7 6、一平面简谐波,波速为 =5 cm/s,设t= 3 s时刻的波形如图所示,则x=0处的质点的振动方程为 ( )(A) y=2102 cos (t/2/2) (m) (B) y=2102 cos (t + ) (m) (C) y=2102 cos(t/2+/2) (m) (D) y=2102 cos (t3/2) (m) 7、一平面简谐波,

3、沿X 轴负方向 传播。x=0 处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( )(A)0 (B) (C) /2 (D) /2 8、有一单摆,摆长 ,小球质量 。设小球的10l.m10g运动可看作筒谐振动,则该振动的周期为( )(A) (B) (C) (D )2232259、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 (A) kA2 (B )kA 2 /2 (C )kA 2 /4 (D )010、两个同方向的简谐振动曲线(如图所示) 则合振动的振动方程为( )(A) (B ) 212xAcostT、 212xAcostT、2(C) (D)212x

4、AcostT、 212xAcostT、11、一平面简谐波在t=0时刻的波形图如图所示,波速为 =200 m/s ,则图中 p (100m) 点的振动速度表达式为( )(A) v=0.2cos (2t) (B) v=0.2cos (t) (C) v=0.2cos (2t/2) (D) v=0.2cos (t3/2) 12、一物体做简谐振动,振动方程为 x=Acos (t+/4), 当时间 t=T/4 (T 为周期)时,物体的加速度为( )(A) A 2 (B) A2 (C) A 2 (D) A23313、一弹簧振子,沿 轴作振幅为 的简谐振动,在平衡位置 处,弹簧振子的势能为零,系统的机xA0x

5、械能为 ,问振子处于 处时;其势能的瞬时值为( )50J/(A) (B ) (C) (D )1.5J5.J5J14、两个同周期简谐运动曲线如图(a) 所示,图()是其相应的旋转矢量图,则x 1 的相位比x 2 的相位( )(A) 落后 (B)超前22(C)落后 (D)超前15、图(a)表示t 0 时的简谐波的波形图,波沿x 轴正方向传播,图(b)为一质点的振动曲线则图(a)中所表示的x 0 处振动的初相位与图(b)所表示的振动的初相位分别为 ( )() 均为零 () 均为 2() () 与 216一平面简谐波,沿 X 轴负方向传播,圆频率为 ,波速为 ,u设 t=T/4 时刻的波形如图所示,则

6、该波的波函数为( ) (A)y=Acos(tx / ) (B) y=Acos(tx / ) /2 u(C)y=Acos(tx / ) (D) y=Acos(tx / ) 17一平面简谐波,沿 X 轴负方向传播,波长 =8 m。已知 x=2 m 处质点的振动方程为 , 则该波的波动方程为( ))610cos(4ty(A) ; (B ) 25810cos(4xty )610cos(4xty(C) ; (D) )33418如图所示,两列波长为 的相干波在 p 点相遇,S 1 点的初相位是 1,S 1 点到 p 点距离是 r1;S 2 点的初相位是 2,S 2 点到 p 点距离是 r2,k=0,1,2

7、,3 ,则 p 点为干涉极大的条件为( )(A) r2r 1= k s1 r1 p(B) 2 1 2(r2r 1)/ =2k (C) 2 1=2k r2(D) 2 12(r 2r 1)/ =2k s2uXAAy319机械波的表达式为 ,则( )m06.cos05.xty() 波长为 100 () 波速为 10 -1() 周期为 1/3 () 波沿 x 轴正方向传播20在驻波中,两个相邻波节间各质点的振动( )(A) 振幅相同,相位相同 (B) 振幅不同,相位相同(C) 振幅相同,相位不同 (D) 振幅不同,相位不同二、填空题(每题 3 分)1、一个弹簧振子和一个单摆,在地面上的固有振动周期分别

8、为 T1 和 T2,将它们拿到月球上去,相应的周期分别为 和 ,则它们之间的关系为 T1 且 T2 。12 22、一弹簧振子的周期为T,现将弹簧截去一半,下面仍挂原来的物体,则其振动的周期变为 。3、一平面简谐波的波动方程为 则离波源0.80 m及0.30 m 两处的相位差084y.costx。4、两个同方向、同频率的简谐振动,其合振动的振幅为 20,与第一个简谐振动的相位差为/6,若第一个简谐振动的振幅为 10 =17.3 cm,则第二个简谐振动的振幅为 cm, 两个简谐振3动相位差为 。5、一质点沿X轴作简谐振动,其圆频率 = 10 rad/s,其初始位移x 0= 7. 5 cm,初始速度

9、v 0= 75 cm/s。则振动方程为 。6、如图,一平面简谐波,沿 X 轴正方向传播。周期 T=8s,已知 t=2s时刻的波形如图所示,则该波的振幅 A= m ,波长 = m,波速 u= m/s。7、一平面简谐波,沿X轴负方向传播。已知 x=1m 处,质点的振动方程为x=Acos (t+) ,若波速为 ,则该波的波函数为 。8、已知一平面简谐波的波函数为y=Acos(atbx) (a,b为正值),则该波的周期为 。9、传播速度为100m/s,频率为 50 HZ的平面简谐波,在波线上相距为0.5m 的两点之间的相位差为 。10、一平面简谐波的波动方程为y=0.05cos(10t-4x),式中x

10、,y以米计,t以秒计。则该波的波速u= ;频率= ;波长= 。11、一质点沿X轴作简谐振动,其圆频率 = 10 rad/s,其初始位移x 0= 7. 5 cm,初始速度v 0=75 cm/s;则振动方程为 。12. 两质点作同方向、同频率的简谐振动,振幅相等。当质点 1 在 处,且向左运动时,另一个2/Ax质点 2 在 处, 且向右运动。则这两个质点的位相差为 。2/Ax 13、两个同方向的简谐振动曲线(如图所示) 则合振动的振幅为 A= 。 14. 沿一平面简谐波的波线上,有相距 的两质点 与 , 点振m0.2AB动相位比 点落后 ,已知振动周期为 ,则波长 = ; 6s波速 u= 。415

11、.一平面简谐波,其波动方程为 ,式中 A = 0.01m, = 0. 5 m, = 25 m/s。则 t = )(2cosxtAy0.1s 时,在 x = 2 m 处质点振动的位移 y = 、速度 v = 、加速度 a = 。16、 质量为 0.10kg 的物体,以振幅 1.010-2 m 作简谐运动,其最大加速度为 4.0 s -1,则振动的周期T = 。17、一氢原子在分子中的振动可视为简谐运动已知氢原子质量 m 1.68 10-27 Kg,振动频率 1.0 1014 Hz,振幅 A 1.0 10 -11则此氢原子振动的最大速度为 。axv18一个点波源位于 O 点,以 O 为圆心,做两个

12、同心球面,它们的半径分别为 R1 和 R2。在这两个球面上分别取大小相等的面积S 1 和S 2,则通过它们的平均能流之比 = 。21P19一个点波源发射功率为 W= 4 w,稳定地向各个方向均匀传播,则距离波源中心 2 m 处的波强(能流密度)为 。20一质点做简谐振动,振动方程为 x=Acos(t+),当时间 t=T/2 (T 为周期) 时,质点的速度为 。三、简答题(每题 3 分)1、从运动学看什么是简谐振动?从动力学看什么是简谐振动?一个物体受到一个使它返回平衡位置的力,它是否一定作简谐振动?2、拍皮球时小球在地面上作完全弹性的上下跳动,试说明这种运动是不是简谐振动?为什么?3、如何理解

13、波速和振动速度?4、用两种方法使某一弹簧振子作简谐振动。方法1:使其从平衡位置压缩 ,由静止开始释放。l方法2:使其从平衡位置压缩2 ,由静止开始释放。若两次振动的周期和总能量分别用 和 表示,则它们之间应满足什么关系?21T、21E、5、从能量的角度讨论振动和波动的联系和区别。.四、简算题1、若简谐运动方程为 ,试求:当 时的位移x ;速度v 和加速度a 。m5.0cos.0tx s2t2. 原长为 的弹簧,上端固定,下端挂一质量为 的物体,当物体静止时,弹m5. kg1.0簧长为 现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取60竖直向下为正向,请写出振动方程。3. 有一单

14、摆,摆长 ,小球质量 . 时,小球正好经过m0.1l g10t处,并以角速度 向平衡位置运动。设小球的运动可看作筒谐振动,试求:rad06.rad/s2.(1)角频率、周期;(2)用余弦函数形式写出小球的振动式。4. 一质点沿 轴作简谐振动,振幅为 ,周期为 。当 时, 位移为 ,且向 轴正方向运动。xc1s20tcm6x求振动表达式; 5. 质量为 m 的物体做如图所示的简谐振动,试求:(1)两根弹簧串联之后的劲度系数;(2)其振动频率 。56. 当简谐振动的位移为振幅的一半时,其动能和势能各占总能量的多少? 物体在什么位置时其动能和势能各占总能量的一半?7. 一质点沿 x 轴作简谐振动,周

15、期为 T,振幅为 A,则质点从 运动到 处所需要的最短21Axx2时间为多少?8有一个用余弦函数表示的简谐振动,若其速度 v 与时间 t 的关系曲线如图所示,则振动的初相位为多少?( ) mV9一质点做简谐振动,振动方程为 x=6cos (100t+0.7)cm,某一时刻它在 x= cm 处,且向 x 轴的负方向运动,试求它重新回到23该位置所需的最短时间为多少?x (cm)10一简谐振动曲线如图所示, 4求以余弦函数表示的振动方程。0 1 2 3 t (s)4五、计算题(每题 10 分)1 已知一平面波沿 轴正向传播,距坐标原点 为 处 点的振动式为 ,波速xO1xP)cos(tAy为 ,求

16、:u(1)平面波的波动式;(2)若波沿 轴负向传播,波动式又如何?2、. 一平面简谐波在空间传播,如图所示,已知 点的振动规律为A,试写出:)cos(tAy(1)该平面简谐波的表达式;(2) 点的振动表达式( 点位于 点右方 处) 。BBd3.一平面简谐波自左向右传播,波速 = 20 m/s。已知在传播路径上 A 点的振动方程为y=3cos (4t) (SI) 另一点 D 在 A 点右方 9 m 处。(1) 若取 X 轴方向向左,并以 A 点为坐标原点,试写出波动方程,并求出 D 点的振动方程。(2) 若取 X 轴方向向右,并以 A 点左方 5 m 处的 O 点为坐标原点,重新写出波动方程及

17、D 点的振动方程。y (m) y (m) x (m) A D O A D x (m)v m /2v mv (m/s)t (s)064一平面简谐波,沿 X 轴负方 y (m) =2 m/s向传播,t = 1s 时的波形图如图所示, 4波速 =2 m/s ,求: (1)该波的波函数。 0 2 4 6 x (m)(2)画出 t = 2s 时刻的波形曲线。 45、已知一沿 正方向传播的平面余弦波, 时的波形如图所示,且周期 为 . xs31t Ts2(1)写出 点的振动表达式;O(2)写出该波的波动表达式;(3)写出 点的振动表达式。A6. 一平面简谐波以速度 沿 轴负方向传播。已知原点的振动曲线如图

18、所示。试写出:m/s8.0ux(1)原点的振动表达式;(2)波动表达式;(3)同一时刻相距 的两点之间的位相差。17、波源作简谐振动,其振动方程为 ,它所形成的波形以 30 -1 的mtcos2401.43y速度沿 x 轴正向传播(1) 求波的周期及波长;(2) 写出波动方程8、波源作简谐运动,周期为 0.02,若该振动以 100m -1 的速度沿 轴正方向传播,设 t 0 时,x波源处的质点经平衡位置向正方向运动,若以波源为坐标原点求:(1)该波的波动方程 ;(2)距波源15.0 和 5.0 m 两处质点的运动方程9、图示为平面简谐波在 t 0 时的波形图,设此简谐波的频率为 250Hz,且

19、此时图中质点 P 的运动方向向上求:(1)该波的波动方程;(2)在距原点 O 为 7.5 m 处质点的运动方程与 t 0 时该点的振动速度10、如图所示为一平面简谐波在 t 0 时刻的波形图,求(1)该波的波动方程;(2) P 处质点的运动方程7振动波动参考答案一、选择题(每题 3 分)1C 2A 3 B 4 C 5 C 6 A 7 D 8 C 9 D 10 B 11 A 12 B 13 A 14 B 15 D 16D 17D 18D 19C 20B二、填空题(每题 3 分)1、 = T1 且 T2 2、 3、 2 /2x4、10cm 5、 6、3,16,2 cmtx)410cos(.77、

20、8、 9、 10、2.5 ms -1 ; 5 s-1, 0.5 m.)1(costAya211、 12. 13、cmtx)40(25.12A14.=24m u=/T=12m/s 15. y=0.01m ; v = 0 ; a = 6.17103 m/s216、 17、s314.0/2/maxAT 13max sm08.6A18. 19. 0.08 J/m2.s 20 . Asin21R三、简答题(每题 3 分)1、答:从运动学看:物体在平衡位置附近做往复运动,位移(角位移)随时间t的变化规律可以用一个正(余)弦函数来表示,则该运动就是简谐振动。1分从动力学看:物体受到的合外力不仅与位移方向相反

21、,而且大小应与位移大小成正比,所以一个物体受到一个使它返回平衡位置的力,不一定作简谐振动。2分2、答:拍皮球时球的运动不是谐振动 1分第一,球的运动轨道中并不存在一个稳定的平衡位置; 1分第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力 1分3、答:波速和振动速度是两个不同的概念。 1分波速是波源的振动在媒质中的传播速度,也可以说是振动状态或位相在媒质中的传播速度,它仅仅取决于传播媒质的性质。它不是媒质中质元的运动速度。1分振动速度才是媒质中质元的运动速度。它可以由媒质质元相对自己平衡位置的位移对时间的一阶导数来求得。 1分4、答:根据题意,这两次弹簧振

22、子的周期相同。1分由于振幅相差一倍,所以能量不同。 1分8则它们之间应满足的关系为: 。2分21214ET5、答:在波动的传播过程中,任意体积元的动能和势能不仅大小相等而且相位相同,同时达到最大,同时等于零,即任意体积元的能量不守恒。 2分而振动中动能的增加必然以势能的减小为代价,两者之和为恒量,即振动系统总能量是守恒的。 1分四、简算题(每题 4 分)1、解: 2分m107.25.04cos1.02tx1分-s4.in2d/ tv1分-222 s1079.5.04cos0d/ txa2解:振动方程:xAcos() ,在本题中,kx=mg,所以k=10 ; 1分0.mk当弹簧伸长为 0.1m

23、时为物体的平衡位置,以向下为正方向。所以如果使弹簧的初状态为原长,那么:A=0.1,1分当t=0时,x=-A,那么就可以知道物体的初相位为1分所以: 1分)( tx10cos.3.解:(1)角频率: , 1分lg周期: 1分102T(2)根据初始条件: A0cos象 限 )象 限 )4,3(021in0可解得: 1分32.8.,所以得到振动方程: 1分)( 1cost4.解:由题已知 A=12 -2m,T=2.0 s =2/T= rads-1 1分又,t=0 时, , cx600v9由旋转矢量图,可知: 2分30故振动方程为 1分)(cos12.tx5.解:(1)两根弹簧的串联之后等效于一根弹

24、簧,其劲度系数满足:和Kxx2x21可得: 所以: 2分21K21K(2)代入频率计算式,可得: 2分mkk)(216.解:E P= 2 分MKMEAkx4341212 ,)(当物体的动能和势能各占总能量的一半: ,)( MkAx212所以: 。 2 分Ax27.解:质点从 运动到 处所需要的最短相位变化为 ,2 分1x2 4所以运动的时间为: 2 分84Tt8. 解:设简谐振动运动方程 1 分)cos(tAx则 1分in)sin(VtAdtxVm又,t=0 时 )s(21t )si(t 2分69. 解:设 t1 时刻它在 x= cm 处,且向 x 轴的负方向运动, t2 时刻它重新回到该处,

25、且向 x 轴的负23方向运动.由题可知:当 时x= cm 且,v 0,此时的100 =4,2分1t 1t当 时x= cm 且,v 0,此时的100 =74, 1分2t32t10它重新回到该位置所需的最短时间为 100( )=7 4412t( )= s 1分12t0310. 解:设简谐振动运动方程 1 分)cos(tAx由图已知 A=4cm,T=2 s =2/T= rads-1 1分又,t=0时, ,且,v 0, 1分0x2振动方程为 x=0.04cos (t/2) 1分五、计算题(每题 10 分)1解:(1)其 O 点振动状态传到 p 点需用 uxt1则 O 点的振动方程为: 2 分cos1)

26、( xtAy波动方程为: 4 分1)( ut(2)若波沿 轴负向传播,则 O 点的振动方程为: 2 分x cos1)( uxtAy波动方程为: 2 分cos1)( uxtAy2、解:(1)根据题意, 点的振动规律为 ,所以 O 点的振动方程为:)cos(tAy2 分cos)( ulty该平面简谐波的表达式为: 5 分cos)( uxltAy(2)B 点的振动表达式可直接将坐标 ,代入波动方程:dx3 分2cos )()( tuldtAy3解:(1)y = 3cos (4t+x/5) (SI) 4 分yD = 3cos (4t14/5 ) (SI) 2 分(2)y = 3cos (4tx/5 ) (SI) 3 分yD = 3cos (4t 14/5 ) (SI) 1 分4 、解: y (m) =2 m/s (1)振幅 A=4m 1 分 4 t = 2s圆频率 = 2 分

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 试题真题

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。