1、1不同级配类型水泥稳定碎石路面基层材料的抗裂性能基金项目:湖南省交通运输厅科技进步与创新项目(201117) 作者简介:曾梦澜(1954-) ,男,湖南汉寿人,湖南大学教授,博士 摘要:通过实验室试验,确定了悬浮密实和骨架密实两种集料级配类型各 5 个水泥用量共 10 种水泥稳定碎石路面基层材料的各项材料参数,进而分析了材料在温度、湿度作用下的抗裂性能. 分析结果显示,悬浮密实型和骨架密实型水泥稳定碎石路面基层材料不开裂的极限降温幅度和极限失水率都是随着水泥用量的增加而减小;相同水泥用量时,骨架密实型材料较悬浮密实型材料的极限降温幅度高 19.9%24.3%和极限失水率高 3.6%6.8%;骨
2、架密实型材料的最佳水泥用量较悬浮密实型材料的最佳水泥用量低约 2%,而最佳水泥用量时极限降温幅度高 279%294%和极限失水率高 109%119%. 关键词:路面;水泥稳定碎石;密实类型;抗裂性能;极限降温幅度;极限失水率 中图分类号:U416.223 文献标识码:A 路面基层位于面层以下,主要承受面层传递下来的车辆荷载,并将这种荷载扩散到路基. 半刚性基层是无机结合料稳定集料或土类材料铺筑的基层,广泛应用于我国各等级公路.半刚性基层的开裂现象主要发生在基层铺筑完成后,未及时铺筑沥青面层这个不利阶段,基层长时间暴2露在大气中,在温度收缩作用、干燥收缩作用的共同作用下,半刚性基层可能开裂,形成
3、一定宽度的裂缝. 铺筑沥青面层,开放交通以后,在行车荷载的作用下,基层裂缝可以使沥青面层底部产生应力集中,拉裂破坏.在外力作用下,裂缝继续向上发展,最后贯通整个沥青面层,形成反射裂缝. 半刚性基层材料抗收缩开裂性能的研究,传统的方法是采用材料的强度和材料的收缩系数来评价材料的抗收缩开裂性能,其不足之处是缺少对力学理论的应用. 实际上,材料的抗收缩开裂性能受材料强度、刚度和收缩系数的共同影响,如由热弹性力学可知,材料受温度作用下产生的温缩应力就与材料的模量和温缩系数成正相关,而材料是否会开裂,还依赖于温缩应力与材料强度的大小有关系. 所以只靠室内试验是无法准确说明材料的抗裂性能的,要把材料的抗收
4、缩开裂性能研究清楚,必须先通过室内试验确定材料的强度、刚度、收缩系数,再建立实际公路工程模型进行力学计算分析,室内试验与力学理论计算两者缺一不可. 本文将通过实验室材料试验,利用试验结果进行力学计算,进而揭示不同级配类型水泥稳定碎石路面基层材料的抗裂性能. 水泥稳定碎石是半刚性基层的一种. 目前大多数公路采用传统的悬浮密实型水泥稳定碎石基层材料. 传统悬浮密实型材料集料的级配采用悬浮密实结构,压实标准试验采用击实试验方法,实验室试件成型采用静压成型方法. 最近的研究表明,改进材料集料的级配,采用骨架密实结构可以提高材料的强度. 相应地,骨架密实型材料的压实标准采用振动压实试验方法,实验室试件成
5、型采用振动压实成型方法. 本文针对悬3浮密实和骨架密实两种集料级配类型水泥稳定碎石路面基层材料,通过实验室试验,确定相关的材料参数,进而重点分析不同材料在温度、湿度作用下的抗裂性能,为路面基层材料的设计与选择提供科学依据. 1 试验材料 1.1 试验原材料 试验用原材料主要是碎石与水泥,碎石采用湖南省常宁市松柏镇楠木村采石场生产的石灰岩碎石,水泥采用衡阳东江金磊水泥有限公司的金磊牌 P.C 32.5 复合硅酸盐水泥. 碎石与水泥的技术指标均满足 JTJ 034-2000公路路面基层施工技术规范4的要求. 1.2 试验混合料 试验用水泥稳定碎石混合料的集料级配包括悬浮密实和骨架密实两种类型,分别
6、为 JTG D50-2006公路沥青路面设计规范5表6.161 的中间级配和表 6.162 的中间级配,见表 1. 水泥用量为变量,参考 JTJ 034 规范和工程经验,悬浮密实型和骨架密实型混合料分别采用质量分数为 3.5%,4.0%,4.5%,5.0%和 5.5%等5 个水泥用量,共构成 10 种混合料. 2 实验室试验 2.1 试验方法 实验室进行的试验包括:击实试验、振动压实试验、试件制作、养生试验、无侧限抗压强度试验、间接抗拉强度试验(劈裂试验) 、劈裂回弹模量试验、干缩试验、温缩试验和断裂韧度试验等,分别确定材料的不同设计与性能参数. 4悬浮密实型材料的最佳含水量和最大干密度采用
7、JTG E51-2009公路工程无机结合料稳定材料试验规程6的 T 0804-1994 无机结合料稳定材料击实试验方法确定,骨架密实型材料的最佳含水量和最大干密度采用 JTG E51 规程的 T 0842-2009 无机结合料稳定材料振动压实试验方法确定. 根据确定的最佳含水量和最大干密度,试验用试件按照 98%的压实度成型,悬浮密实型材料试件采用 JTG E51 规程的 T 0843 规程无机结合料稳定材料试件制作方法(圆柱形)或 JTG E51 规程的 T 0844-2009 无机结合料稳定材料试件制作方法(梁式)成型,骨架密实型材料试件采用JTG D50 规范的附录 A.1 半刚性基层材
8、料振动法试件成型方法成型. 试件成型后进行养生,试件养生采用 JTG E51 规程的 T 0845-2009 无机结合料稳定材料养生试验方法. 材料 7 d 无侧限抗压强度采用 JTG E51 规程的 T 0805-1994 无机结合料稳定材料无侧限抗压强度试验方法确定,悬浮密实型材料的试件为150 mm 材料总干缩系数采用 JTG E51 规程的 T 0854-2009 无机结合料稳定材料干缩试验方法确定,试件为 100 mm 的中梁试件,其中切口深度为 10 mm,即切高比为 0.1. 断裂韧度反映了材料抵抗裂缝扩展的能力,其值等于裂纹失稳并开始扩展时的应力强度因子值. 2.2 试验结果
9、不同试验结果见表 2. 3 材料抗裂性能计算 53.1 评价指标 根据材料力学原理,如果材料在外界作用下产生的拉应力大于材料的抗拉强度,材料将开裂;根据断裂力学原理,如果存在初始裂缝的材料在外界作用下产生的裂缝尖端应力强度因子大于材料的断裂韧度,材料的初始裂缝将开始扩展. 材料的抗拉强度和断裂韧度是材料的固有特性,而材料在外界作用下产生的最大拉应力和裂缝尖端应力强度因子不是材料的固有特性,会随着外界作用的方式及大小、材料的几何尺寸及边界条件的变化而变化. 也就是说,只有在给定外界作用方式和材料几何尺寸及边界条件的前提条件下,才可以确定使材料到达开裂临界状态时的外界作用的大小,本文將使材料到达开
10、裂临界状态时的外界作用的大小称为极限作用,并以极限作用来评价特定前提条件下材料的抗裂性能,极限作用越大表明材料的抗裂性能越好. 基层缺乏沥青面层保护,长时间暴露在大气中而产生的收缩开裂是造成半刚性基层沥青路面开裂的主要原因. 本文结合公路工程的实际状况,分析不同的基层材料在温度、湿度作用下的极限降温幅度和极限失水率,进而评价不同基层材料的抗裂性能. 极限降温幅度指失水率为零时材料不开裂允许的最大降温幅度,极限失水率指降温幅度为零时材料不开裂允许的最大失水率. 材料的极限降温幅度、极限失水率越大,材料的抗裂性能越好. 3.2 降温与失水沿深度的变化 拟建的某高速公路基层宽 40 m,上基层厚 2
11、0 cm,下基层厚 20 cm,6基层总厚度为 40 cm,上下基层的材料相同,均为水泥稳定碎石. 基层材料参数见表 2,泊松比假定为 0.25;土基材料回弹模量为 40 MPa,泊松比为 0.4. 首先假定在外界降温影响下基层材料的降温方式如式(1): 式中:Ts 为基层表面的降温幅度,;T 为距基层表面深度为 z 处的降温幅度,;k 为降温幅度随深度变化的因子,取 5(1/m) ;z 为距基层表面的深度,m. 再假定在外界干燥影响下基层材料的失水方式 如式(2): 式中:Ws 为基层表面的失水率,%;W 为距基层表面深度为 z 处的失水率,%;z 为距基层表面的深度,m;h 为基层的总厚度
12、,m. 3.3 无初始裂缝计算结果 当施工质量好时,公路的基层不存在初始裂缝,可以采用厚度方向沿公路纵向的平面应变模型来计算基层材料的极限降温幅度和极限失水率,计算模型的示意图见图 1.无初始裂缝情况之所以采用厚度方向沿公路纵向的平面应变计算模型,是因为公路的纵向长度可视为无限长,同时,公路所受的降温和干燥作用不随公路的纵向而变化(注意本文采用的降温和干燥作用其大小只随深度变化,即同一深 度时,公路的各点作用大小相同) ,符合热弹性力学平面应变的条件要求. 为求无初始裂缝条件下材料的极限降温幅度和极限失水率,借助有限元分析软件,计算基层材料在不同的表面降温幅度作用下的最大温缩拉应力和在不同的表
13、面失水率作用下的最大干缩拉应力. 计算结果表7明,基层最大温缩与干缩拉应力均产生在基层横断面上表面的中间点,方向沿公路纵向水平,垂直于横断面,表面降温幅度 Ts 与最大温缩拉应力成正比的线性关系,表面失水率 Ws 与最大干缩拉应力成正比的线性关系: 式中:T 为在表面降温幅度 Ts 作用下的最大温缩拉应力,MPa;系数 a 为单位降温幅度下的温缩拉应力,MPa/;W 为在表面失水率 Ws作用下的最大干缩拉应力,MPa;系数 b 为单位失水率下的干缩拉应力,MPa/%. 所用材料系数 a,b 的计算结果见表 3. 基层材料无初始裂缝时,根据极限作用的定义可知,基层材料的极限降温幅度即为材料劈裂强
14、度与系数 a 的比值,极限失水率即为材料劈裂强度与系数 b 的比值. 材料的极限降温幅度和极限失水率越大,表明材料的抗裂性能越好,基层越不容易产生横向裂缝. 无初始裂缝时,所用材料极限降温幅度和极限失水率的计算结果见表 3. 3.4 有初始裂缝计算结果 当施工质量差时,基层存在初始裂缝,假设这些初始裂缝沿基层表面深度为 1 cm,并贯穿整个基层的横向宽度,初始裂缝的纵向间距约为6 m12. 本文采用厚度方向沿公路横向的平面应变模型来计算基层材料的极限降温幅度和极限失水率,计算模型的示意图见图 2.有初始裂缝情况之所以采用厚度方向沿公路横向的平面应变计算模型,是因为在相邻的横向初始裂缝的纵向间距
15、的中间位置存在中性面(可以利用中性面来作为计算模型的左右边界,此边界条件设为对称边界条件) ,相邻中性面的纵向间距为 6 m(由相邻的横向初始裂缝的纵向间距确定) ,而基8层的宽度为 40 m,其值远远大于相邻中性面的纵向间距(40 6 m) ,同时,公路所受的降温和干燥作用不随公路的横向宽度方向而变化(注意本文采用的降温和干燥作用其大小只随深度变化,即同一深度时,公路的各点作用大小相同) ,符合热弹性力学平面应变的条件要求. 为求有初始裂缝条件下材料的极限降温幅度和极限失水率,同样借助有限元分析软件,计算基层材料在不同的表面降温幅度作用下的裂缝尖端温缩应力强度因子和在不同的表面失水率作用下的
16、裂缝尖端干缩应力强度因子. 计算结果表明,基层开裂为张开型 I 型裂缝,表面降温幅度 Ts 与裂缝尖端温缩应力强度因子成正比的线性关系,表面失水率 Ws与裂缝尖端干缩应力强度因子成正比的线性关系: 基层材料存在初始裂缝时,根据极限作用的定义可知,基层材料的极限降温幅度即为材料断裂韧度与系数 a的比值,极限失水率即为材料断裂韧度与系数 b的比值. 材料的极限降温幅度和极限失水率越大,表明材料的抗裂性能越好,基层的横向初始裂缝越不容易开展. 存在初始裂缝时,所用材料极限降温幅度和极限失水率的计算结果见表 3. 4 计算结果分析 4.1 无初始裂缝计算结果分析 图 3 所示为所用不同混合料基层无初始
17、裂缝时的极限降温幅度,由图可见,悬浮密实型材料和骨架密实型材料的极限降温幅度都是随着水泥用量的增加而减小,悬浮密实型材料的极限降温幅度低于骨架密实型材料的极限降温幅度. 计算结果显示,当水泥用量在 3.5%5.5%变化时,水泥用量增加 1.0%,悬浮密实型材料的极限降温幅度平均降低 25.5%,骨架密实型材料的极限降温幅度平均降9低 24.0%;当水泥用量在 3.5%5.5%变化时,相同的水泥用量下,骨架密实型材料较悬浮密实型材料的极限降温幅度平均高 24.3%,表明当基层材料无初始裂缝时,骨架密实型材料比悬浮密实型材料更能抵抗因降温而产生的开裂. 图 4 所示为所用不同混合料基层无初始裂缝时
18、的极限失水率,由图可见,悬浮密实型材料和骨架密实型材料的极限失水率都是随着水泥用量的增加而减小,在低水泥用量时悬浮密实型材料的极限失水率高于骨架密实型材料的极限失水率,在高水泥用量时悬浮密实型材料的极限失水率低于骨架密实型材料的极限失水率. 计算显示,当水泥用量在3.5%5.5%变化时,水泥用量增加 1.0%,悬浮密实型材料的极限失水率平均降低 19.7%,骨架密实型材料的极限失水率平均降低 13.7%;当水泥用量在 3.5%5.5%变化时,相同的水泥用量下,骨架密实型材料较悬浮密实型材料的极限失水率平均高 6.8%,表明当基层材料无初始裂缝时,骨架密实型材料比悬浮密实型材料更能抵抗因干燥而产
19、生的开裂. 4.2 有初始裂缝计算结果分析 图 5 所示为所用不同混合料基层有初始裂缝时的极限降温幅度,由图可见,悬浮密实型材料和骨架密实型材料的极限降温幅度都是随着水泥用量的增加而减小,悬浮密实型材料的极限降温幅度低于骨架密实型材料的极限降温幅度. 计算显示,当水泥用量在 3.5%5.5%变化时,水泥用量增加 1.0%,悬浮密实型材料的极限降温幅度平均降低 26.9%,骨架密实型材料的极限降温幅度平均降低 25.9%;当水泥用量在 3.5%5.5%变化时,相同的水泥用量下,骨架密实型材料较悬浮密实型材料的极限降10温幅度平均高 19.9%,表明当基层材料存在初始裂缝时,骨架密实型材料比悬浮密
20、实型材料更能抵抗因降温而产生的开裂. 图 6 所示为所用不同混合料基层有初始裂缝时的极限失水率,由图可见,悬浮密实型材料和骨架密实型材料的极限失水率都是随着水泥用量的增加而减小,在低水泥用量时悬浮密实型材料的极限失水率高于骨架密实型材料的极限失水率,在高水泥用量时悬浮密实型材料的极限失水率低于骨架密实型材料的极限失水率. 计算显示,当水泥用量在3.5%5.5%变化时,水泥用量增加 1.0%,悬浮密实型材料的极限失水率平均降低 21.9%,骨架密实型材料的极限失水率平均降低 15.3%;当水泥用量在 3.5%5.5%变化时,相同的水泥用量下,骨架密实型材料较悬浮密实型材料的极限失水率平均高 3.
21、6%,表明当基层材料存在初始裂缝时,骨架密实型材料比悬浮密实型材料更能抵抗因干燥而产生的开裂. 4.3 最佳水泥用量及抗裂性能 由上述分析可知,水泥用量越大,基层材料的抗裂性能越差,要保证材料的抗裂性能就需要选用较低的水泥用量. 另一方面,由表 2 可知,水泥用量越大,基层材料的强度越高,要保证材料的强度就需要选用较高的水泥用量. 因此,最佳水泥用量就是满足强度要求的最低水泥用量. 近年来,随着对半刚性基层材料开裂机理认识的深入和对路面结构承载能力要求的提高,水泥稳定碎石材料设计的强度范围逐步放宽13,假定 7 d 无侧限抗压强度代表值不小于 4.5 MPa,最佳水泥用量就是满足7 d 无侧限抗压强度代表值不小于 4.5 MPa 的最低水泥用量. 由表 2 可见,所用材料中悬浮密实型材料的最佳水泥用量约为 5.5%,骨架密实型材料