调和Dirichlet空间上小Hankel算子的乘积(英文).doc

上传人:gs****r 文档编号:1759975 上传时间:2019-03-14 格式:DOC 页数:4 大小:107.50KB
下载 相关 举报
调和Dirichlet空间上小Hankel算子的乘积(英文).doc_第1页
第1页 / 共4页
调和Dirichlet空间上小Hankel算子的乘积(英文).doc_第2页
第2页 / 共4页
调和Dirichlet空间上小Hankel算子的乘积(英文).doc_第3页
第3页 / 共4页
调和Dirichlet空间上小Hankel算子的乘积(英文).doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1调和 Dirichlet 空间上小 Hankel 算子的乘积(英文)AbstractIn this paper, we study small Hankel operators with harmonic symbols on the harmonic Dirichlet space, completely characterize the condition for the cummutativity and zero-product of small Hankel operators. Key wordsHarmonic Dirichlet space; Small Hankel ope

2、rator; Commutativity; Zero product CLC numberO 177.1Document codeA Let D be the open unit disk in the complex plane C and dA be the normalized area measure on D. The Sobolev space S is the completion of the space of smooth function f on D such that E Recently, products of Toeplitz operators and Hank

3、el operators on the Dirich- let space have been studied intensively2?9. As has implied10?15, the theory of Toeplitz operators on harmonic function space is quite different from the theory on analytic function space. For the operators on harmonic Dirichlet space, (semi-) commutativity15and zero-produ

4、ct16of Toeplitz operators on Dhwith symbols in M have been completely characterize. In this paper, for symbols in M, we consider 2the problem when two small Hankel operators is commutativity. By using the matrix representation of small Hankel operator on harmonic Dirichlet space, we give a complete

5、characterization of such operators to be commutativity. By using a similar method, the zero-product of small Hankel operators is also characterized. 2Preliminaries Recall that U is the operator on S defined by (Uf) (z) = f(z) , fS, and U is an unitary on S, U?= U = U?11. For simplicity, for fS, deno

6、te?f as Uf, i.e.,?f(z) = f(z). Let P be the orthogonal projection from S onto D and P1be the orthogonal projection from S ontoD, then P1= UPU1. Similarly, for the orthogonal projection Q, we have the following result. As the computation in Theorem 1, by equations above, we obtain the following equat

7、ions. Compare equations (14) , (18) , (19) and equations (16) ,(19) , we have the following equations (a) and (b) respectively. Compare equation (15) , ( 18) and equations(17) ,(18) , (19) , we obtain the following equations (c) and (d) respectively. 31 Zhang Z L, Zhao L K. Toeplitz algebra on the H

8、armonic Dirichlet space. J Fudan Univ Nat Sci, 2008, 47(2): 251-259. 2 Lee Y J. Finite rank sums of products of Toeplitz and Hankel operators. J Math Anal Appl, 2013, 397: 503-514. 3 Lee Y J, Zhu K H. Sums of products of Toeplitz and Hankel operators on the Dirichlet space. Integr Equ Oper Theory, 2

9、011, 71: 275-302. 4 Lee Y J. Finite sums of Toeplitz products on the Dirichlet space. J Math Anal Appl, 2009, 357: 504-515. 5 Lee Y J. Algebraic properties of Toeplitz operators on the Dirichlet space. J Math Anal Appl, 2007, 329: 1316-1329. 6 Yu T. Toeplitz operators on the Dirichlet space. Integr

10、Equ Oper Theory, 2010, 67(2): 163-170. 7 Yu T. Operators on the orthogonal complement of the Dirichlet space. J Math Anal Appl, 2009, 375: 300-306. 8 Yu T, Wu S. Commuting dual Toeplitz operators on the orthogonal complement of the Dirichlet space. Acta Math Sin (Engl Ser) , 2009, 25(2): 245-252. 9

11、Zhao L K. Hankel operators on the Dirichlet space. J Math Anal Appl, 2009, 352: 767-777. 10 Chen Y, Lee Y J, Nguyen Q. Algebraic properties of 4Toeplitz operators on harmonic Dirichlet space. Integr Equ Oper Theory, 2011, 69(2): 183-201. 11 Choe B, Lee Y J. Commuting Toeplitz operators on the harmon

12、ic Bergman space. Michigan Math J, 1999, 46: 163-174. 12 Choe B, Lee Y J. Commutants of analytic Toeplitz operators on the harmonic Bergman space. Integr Equ Oper Theory, 2004, 50: 559-564. 13 Ding X H. A question of Toeplitz operators on the harmonic Bergman space. J Math Anal Appl, 2008, 344: 367-

13、372. 14 Guo K Y, Zheng D C. Toeplitz algebra and Hankel algebra on the harmonic Bergman space. J Math Anal Appl, 2002, 276: 213-230. 15 Zhao L K. Commutativity of Toeplitz operators on the harmonic Dirichlet space. J Math Anal Appl, 2008, 339: 1148-1160. 16 Zhao L K. Product of Toeplitz algebra on the Harmonic Dirichlet space. Acta Math Sin(Engl Ser) , 2012, 28: 1033-1040.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 学科论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。