火电厂用冷却塔替代烟囱的探讨.doc

上传人:99****p 文档编号:2024999 上传时间:2019-03-29 格式:DOC 页数:5 大小:24.50KB
下载 相关 举报
火电厂用冷却塔替代烟囱的探讨.doc_第1页
第1页 / 共5页
火电厂用冷却塔替代烟囱的探讨.doc_第2页
第2页 / 共5页
火电厂用冷却塔替代烟囱的探讨.doc_第3页
第3页 / 共5页
火电厂用冷却塔替代烟囱的探讨.doc_第4页
第4页 / 共5页
火电厂用冷却塔替代烟囱的探讨.doc_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、火电厂用冷却塔替代烟囱的探讨摘 要 长期以来,烟囱成为火电厂必不可少的重要设施。近年来,随着脱硫脱硝技术的运用,使处理后的烟气温度和烟气成分与过去相比发生了变化。能否在适当条件下用冷却塔替代烟囱(将烟气通过冷却塔排放)呢?通过对塔内气体流动工况的变化分析,以及对湿法脱硫后的烟气从烟囱排放分析和烟气中残余二氧化硫和飞灰对循环冷却水污染分析,最后得出结论:若烟气采用了高效除尘和脱硫(或脱硫脱硝)处理,可以设置低矮的事故烟囱,不再建设永久性烟囱,从而降低造价和运行费用。随着社会生产力的发展和人们生活质量的提高,人们对环境质量愈来愈关注,对火电厂也提出了更高的环保要求。愈来愈多的电厂将视其煤质情况和环

2、保要求对烟气进行脱硫处理,甚至于进行脱硝处理。在某些采用石灰石湿法脱硫(以下简称 FGD)的系统中,经脱硫后的烟温约50 ,若不加热则可能带来烟囱排放困难。能否在采用自然通风冷却塔的电厂,将处理后的烟气通过冷却塔排放?本文试图对该问题做一些分析和探讨。1 技术方案对于采用了冷却水再循环的火电厂,若其烟气进行了脱硫脱硝处理(或只是脱硫处理),在正常运行工况下,烟气经过二氧化硫吸收塔处理,进入自然通风冷却塔,在配水装置之上均匀排放,通过冷却塔排入大气。同时,根据二氧化硫吸收塔的可靠性和事故率大小,可以设置旁路烟道,通过事故烟囱排放。2 技术经济分析2.1 塔内气体流动工况的变化分析与常规做法不同,

3、烟气不通过烟囱排放,而被送至自然通风冷却塔。在塔内,烟气从配水装置上方均匀排放,与冷却水不接触。由于烟气温度约 50 ,高于塔内湿空气温度,发生混和换热现象,混和的结果,改变了塔内气体流动工况。2.1.1 烟气进入对热浮力的影响塔内气体向上流动的原动力是湿空气(或湿空气与烟气的混和物)产生的热浮力(也称抽力),热浮力克服流动阻力而使气体流动。热浮力为 Z=he.g,式中 he冷却塔有效高度;塔外空气密度 k 与塔内气体密度 m 之差。下面,以某 300 MW 机组为例,做简要计算:已知 f=10%的气象条件为 1=25 ,1=78%,pamb=99.235 kPa,查有关图表或用公式计算出塔外

4、空气密度 k=1.152 kg/m3。一般情况,塔内空气密度 m0.98 k=1.129 kg/m3,在标准大气压下,0 时,烟气根据经验,一般煤质 oy1.34 kgNm3。经湿法脱硫后的烟温 ty=50 ,考虑烟气 x1%,水蒸气os=0.804 kg/Nm3,则可计算出进入冷却塔的烟气密度显然,进入冷却塔的烟气密度低于塔内气体的密度,对冷却塔的热浮力产生正面影响。2.1.2 烟气进入对塔内气体流速的影响已知列举的 300 MW 机组,冷却塔淋水面积 Am=6 500 m2,塔内气体流速 vm=1.07 m/s,计算出塔内气体流量 Qm=Am.vm=6 955 m3/s;再计算出排烟温度

5、140 时,排烟量约 1 800 000 m3/h(折合 500 m3/s)。换算为脱硫后 50 的烟气量(忽略除去的 SO2 气体,增加的水蒸气按经验为 10%):进入塔内的烟气占塔内气体的容积份额:显然,进入冷却塔的烟气所占容积份额小,对塔内气体流速影响甚微。2.1.3 烟气的进入对塔内阻力的影响根据塔内阻力公式 p=(m vm)/(2),阻力系数 主要在于配水装置,而烟气在配水装置以上进入,对配水装置区间段阻力不产生影响。因此,对总阻力的影响甚微,在工程上亦可以忽略不计。从以上分析可得到以下结论:烟气能够通过双曲线自然通风冷却塔顺利排放。2.2 湿法脱硫后的烟气从烟囱排放存在着困难烟气经

6、石灰石(湿法)脱硫后,烟温一般在 50 左右。由上例知,50 的烟气与室外空气密度差甚小,再考虑到烟囱壁散热导致烟气温降,烟囱非双曲线形,其流动特性不及冷却塔,加上气候变化的影响,可见,经脱硫后 50 的烟气通过烟囱排放存在着困难。否则,不得不对 50 的烟气进行加热,这样,势必导致系统复杂,初投资及运行费用增加。2.3 烟气通过冷却塔排放对环境的影响据国外研究机构的研究成果表明,通过冷却塔排放的烟气,其抬升高度能满足环保要求,在此不再详述。2.4 烟气中残余二氧化硫和飞灰不会对循环冷却水造成污染经脱硫和高效除尘后,烟气中残余二氧化硫和飞灰含量低,二氧化硫(包括三氧化硫)露点温度相应降低,在塔

7、内结露的可能性小。加之二氧化硫吸收塔和冷却塔均有除水装置,塔内气体带水滴(雾)少,烟气中飞灰不易与水滴(雾)结合而沾附在塔内壁。因此,烟气中残余二氧化硫和飞灰不会对冷却塔和循环冷却水产生污染。在实际工程运用前,还可以通过试验获取数据并进行分析。2.5 投资节约分析采用烟气通过冷却塔排放方案后,根据二氧化硫吸收塔设备及运行可靠性情况,可以根据环保和技术要求另设置简易低矮的事故旁路烟囱。因此,可以节约永久性烟囱的投资。同时,烟气不需再加热,系统简单,运行费用和初投资也可降低。2.6 使用条件限制该方案在工程运用中受到以下条件限制:a)必须在采用了冷却水再循环和自然通风冷却塔的火电厂方可应用;b)必须对烟气进行高效除尘和脱硫(或脱硫脱硝)处理;c)在总平面布置上,冷却塔的位置与炉后脱硫塔相距不远。3 工程运用实践据悉,国外也在这方面进行着探索和试验,效果尚令人满意。4 结束语在采用冷却水再循环和自然通风冷却塔的火电厂,对烟气采用了高效除尘和脱硫(或脱硫脱硝)处理后,在技术、经济、安全比较的前提下,可以考虑烟气通过冷却塔排放。并视脱硫塔可靠性情况和事故率大小,设置低矮的事故烟囱,不再建设永久性烟囱,从而降低造价和运行费用。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 毕业论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。