1、1人教版八年级上册数学知识点归纳第十一章 三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.要点:三条线段;不在同一直线上;首尾顺次相接2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.注意:已知两边可得第三边的取值范围是:两边之差第三边两边之和3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.注意:三角形的三条高是线段;画三角形的高时,只需要三角形一个顶点向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中
2、线.注意:三角形有三条中线,且它们相交三角形内部一点,交点叫重心画三角形中线时只需连结顶点及对边的中点即可5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注意:三角形的角平分线是一条线段,而角的平分线是经过角的顶点且平分此角的一条射线三角形有三条角平分线且相交于一点,这一点一定在三角形的内部三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻
3、两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:三角形的内角和定理:三角形的内角和为 180直角三角形的两个锐角互余;有两个角互余的三角形是直角三角形.三角形外角的性质:性质 1:三角形的一个外角等于和它不相邻的两个内角的和.性质 2:三角形的一个外角大于任何一个和它不相邻的内角. 三角形的一个
4、外角和与之相邻的内角互补.过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角多边形内角和公式: 边形的内角和等于 180n(2)n2多边形的外角和:多边形的外角和为 360.多边形对角线的条数:从 边形的一个顶点出发可以引 条对角线,把多边形分成 个三角形.n(3)n(2)n 边形共有 条对角线 .n(3)2第十二章 全等三角形一、知识框架:二、知识概念:1.基本定义:全等形:能够完全重合的两个图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:全等三角形形状与大小完全相等,与位置无关;一个三角形经过平移、翻折、旋转可以得到它的全等形;三角
5、形全等不因位置发生变化而改变。对应顶点:全等三角形中互相重合的顶点叫做对应顶点.对应边:全等三角形中互相重合的边叫做对应边.对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.全等三角形的性质:全等三角形的对应边相等,对应角相等.理解:长边对长边,短边对短边;最大角对最大角,最小角对最小角;对应角的对边为对应边,对应边对的角为对应角。(3)全等三角形的周长相等、面积相等。(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3.全等三角形的判定定理:边边边( ):三边对应相等的两个
6、三角形全等 .S边角边( ):两边和它们的夹角对应相等的两个三角形全等.A角边角( ):两角和它们的夹边对应相等的两个三角形全等.角角边( ):两角和其中一个角的对边对应相等的两个三角形全等.斜边、直角边( ):斜边和一条直角边对应相等的两个直角三角形全等.HL4.证明两个三角形全等的基本思路:35.角平分线:画法:性质定理:角平分线上的点到角的两边的距离相等.性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、
7、高、等腰三角形等所隐含的边角关系)根据题意,画出图形,并用数字符号表示已知和求证.经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)截长补短法证三角形全等。第十三章 轴对称一、知识框架:二、知识概念:1.基本概念:轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.两个图形成轴对称:把一个图
8、形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.4(4)线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.(5)等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.(6)等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:对称的性质:不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。两个图形关于某条直线成
9、轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.与一条线段两个端点距离相等的点在这条线段的垂直平分线上.关于坐标轴对称的点的坐标性质点(x, y)关于 x轴对称的点的坐标为(x, -y).点(x, y)关于 y轴对称的点的坐标为(-x, y).点(x, y)关于 原点 对称的点的坐标为(-x,- y)等腰三角形的性质:等腰三角形两腰相等.等腰三角形两底角相等(等边对等角).等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.等腰三角形是轴对称图形,对称轴是三线合一(1 条).等边三角形的性质:等边三角形
10、三边都相等.等边三角形三个内角都相等,都等于 60等边三角形每条边上都存在三线合一.等边三角形是轴对称图形,对称轴是三线合一(3 条).(6)三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等3.基本判定:等腰三角形的判定:有两条边相等的三角形是等腰三角形.如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).等边三角形的判定:三条边都相等的三角形是等边三角形.三个角都相等的三角形是等边三角形.有一个角是 60的等腰三角形是等边三角形.4.基本方法:做已知直线的垂线:做已知线段的垂直平分线:作对称轴:连接两个对应点,作所连线段的垂直平分线.作已知图形关于某直线
11、的对称图形:在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第十四章 整式的乘除与分解因式一、知识框架:等边三角形的性质5整式乘法整式除法 因式分解乘法法则二、知识概念:1.基本运算:同底数幂的乘法: 幂的乘方: 积的乘方:mnanmanab2.整式的乘法:单项式 单项式:系数 系数,同字母 同字母,不同字母为积的因式 .单项式 多项式:用单项式乘以多项式的每个项后相加.多项式 多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:平方差公式: 2abab完全平方公式: ;222ab4.整式的除法:同底数幂的除法: mna单项式 单项式:系数 系数,同字母 同字母,
12、不同字母作为商的因式.多项式 单项式:用多项式每个项除以单项式后相加.多项式 多项式:用竖式 .5.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做把这个式子因式分解.6.因式分解方法:提公因式法:找出最大公因式.公式法:平方差公式: 完全平方公式:2abab222aba立方和: 立方差:322()3()十字相乘法: 拆项法 添项法2xpqxpxq第十五章 分式一、知识框架 :6二、知识概念:1.分式:形如 , 是整式, 中含有字母且 不等于 0的整式叫做分式.其中 叫做分式的分子, 叫做AB、 BAB分式的分母.2.分式有意义的条件:分母不等于 0.3.分式的基本性质:分式的分子和
13、分母同时乘以(或除以)同一个不为 0的整式,分式的值不变.4.约分:把一个分式的分子和分母的公因式(不为 1的数)约去,这种变形称为约分. 5.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.6.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.7.分式的四则运算:同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为: abc异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: acdbb分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分
14、子,把分母相乘的积作为积的分母.用字母表示为: acbd分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为: c分式的乘方法则:分子、分母分别乘方.用字母表示为:nab8.整数指数幂: ( 是正整数)mnan、 ( 是正整数)、 ( 是正整数)nb ( , 是正整数, )mna0amn、 n ( 是正整数)nb ( ,n 是正整数)1na09.分式方程的意义 :分 母 中 含 有 未 知 数 的 方 程 叫 做 分 式 方 程 . 10.分 式 方 程 的 解 法 : 去 分 母 (方 程 两 边 同 时 乘 以 最 简 公 分 母 ,将 分 式 方 程 化 为 整 式 方 程 ); 按 解 整 式 方 程的 步 骤 求 出 未 知 数 的 值 ; 验 根 (求 出 未 知 数 的 值 后 必 须 验 根 ,因 为 在 把 分 式 方 程 化 为 整 式 方 程 的 过 程 中 ,扩 大 了 未 知 数 的 取 值 范 围 ,可 能 产 生 增根) .