1、380等位酶标记381等位酶标记及其在交配系统研究中的应用植物的存活、生育力、基因流等方面的变异经常导致种群内和种群间等位基因频率发生改变。同时,要理解对特定生态环境的适应过程就必须对植物的交配系统、传粉机制、基因流等进行深入的研究。对这些问题的研究往往需要利用一些不影响生物表型性状的遗传标记。等位酶标记在研究种群机制方面做出了很大的贡献。最近 20 多年来,各种各样的DNA 分子标记技术的迅速发展更是为植物进化生态学中诸多问题的研究提供了技术平台,在确定个体繁殖成效、测定自交率和基因流、度量遗传分化程度等方面得到了广泛的应用。交配系统和基因流研究是植物进化生态学研究的两个重要课题。植物的交配
2、系统不仅决定了种群未来世代的基因型频率,对植物种群的有效大小、基因流和进化等因素也有重要的影响(葛颂 1998) 。通过 对基因流的研究,我们就可能对种群分化等种群遗传学内容和植物的繁殖过程进行深入的研究。近来,通过分子标记,估计种群自交率、确定种群内的交配格局、借助亲本分析的方法直接测量基因流、或者借助种群遗传学模型间接推导基因流以及进行克隆鉴定等方面的工作正在逐渐增多。面对各种各样的分子标记,如何针对特定的问题选择恰当的分子标记,是亟待解决的问题。这就需要我们弄清各种分子标记的基本原理、实验流程是否繁杂、有无成熟的数据处理方法、各种分子标记的优缺点以及它们的适用范围。选择好了分子标记之后,
3、还必须确定如何根据分子标记获得的数据解决具体的问题,如交配系统和基因流的研究。首先要确定解决某一特定问题需要测量的参数及其依附的理论模型,有时甚至包括模型假设,然后根据各种分子标记在这方面的优缺点进行取舍,最终找到既能解决问题又最有效的分子标记。等位酶标记遗传标记作为检测个体间遗传差异的方法在进化生态学中有着非常重要的作用。早期的植物种群生物学研究一般都采用形态上的多态性状来检测个体间遗传差异。这些形态标记在早期的一些研究中(Epling & Dobzhansky 1942, Faberge 1943)起到了积极的作用,但是基于表型变异的形态标记通常只受一个位点控制,许多表型性状(如花色等)必
4、须在生活史后期才能度量,而且对大多数植物而言都很难找到合适的形态变异,所以,形态标记有很明显的局限性(Cruzan 1998) 。随着电泳技术的发展,在蛋白质和 DNA 多态性的基础上相继发展了蛋白质标记(如,等位酶)和 DNA 分子标记(如,RFLP、RAPD 、 AFLP、SSR 、ISSR、SNPs 等) 。等位酶(allozyme)是指同一基因位点的不同等位基因所编码的一种酶的不同形式(Prakash et al. 1969) 。同源染色体上不同的等位基因实际上是一段不同核苷酸序列的 DNA链,经过转录和翻译过程,最后将编码具有不同构象和大小的蛋白质亚基,在电场中,不同的蛋白质亚基由于
5、带电量和半径不同其迁移率也不同,表现在酶谱上,将有不同的迁移382距离,从而分辨出不同类型的亚基。反过来,根据酶谱上分离出来的各个亚基的不同表现(迁移距离相等或者不等) ,就可以确定该个体在该位点上是纯合体还是杂合体(图 1) 。等位酶标记第一次用比较简单而直观的方法识别出了大量的基因位点和每个位点的等位基因,能够定量地考察遗传变异。等位酶标记是一个共显性标记(codominance, 即能够区分杂合子 Aa 和显性纯合子 AA) ,从酶谱上可以直接确定编码该等位酶的等位基因,而且等位酶的遗传和表达都遵循孟德尔定律。等位酶分析的成本相对较低,方法也比较简单。等位酶分析方法有着较广的应用范围。等
6、位酶作为一种稳定的基因组标记,它所揭示的酶蛋白质的多态性可以看作是对整个基因组的随机取样,从而对种群的遗传学结构做出估计,测量种群的遗传多样性以及各种群间的遗传距离。进行等位酶分析首先要把各种有功能的可溶性酶蛋白质从植物细胞中提取出来,并保证这些酶提取出来以后活性基本不变。通常使用的提取缓冲液(extracting buffer)有简单磷酸提取缓冲液、复杂磷酸提取缓冲液、Tris - 马来酸提取缓冲液和 Tris - HCl 提取缓冲液四种。多数食用植物和花粉可以用简单缓冲液提取,而大多数野生植物由于含有较多的酚类等有害于酶蛋白质的物质,一般需要用复杂的提取缓冲液。所以,等位酶分析的第一步就是
7、针对具体的实验材料确定合适的提取缓冲液(详见王中仁 1996) 。然后进行电泳分离。现在经常使用的有水平切片淀粉凝胶电泳、聚丙烯酰胺凝胶电泳、醋酸纤维素膜电泳等等,这一过程相对简单,要注意的是在整个过程中要防止酶失去活性。电泳结束后应立即进行染色。等位酶染色分为胶染和液染两种,到底采用哪一种染色方法,主要取决于各自实验室的条件、染色效果以及染色的成本等等。许多研究都提供了各种不同酶系统染色的详细配方(Soltis et al. 1983, Werth 1985, Pasteur et al. 1988, Wendel & Weeden 1989, Werth 1990)。含有各种酶蛋白的组织匀
8、浆样品经过凝胶电泳以后,由于不同酶蛋白的净电荷以及分子大小和形状不同而迁移速率不同,各种酶蛋白分散在电泳跑道上。但此时这些酶是看不见的。专性组织化学染色是其成为可见酶谱的一个重要环节。通常,一种染色混合液只提供适合于特定酶的特殊反应底物,使得这种酶催化有关联的特殊反应,产生可见的染料。化学探测染色、电子传递染料染色、酶连锁染色是三种常见的染色方法。在化学探测染色反应中,凝胶上的酶蛋白与染液中的底物反应,反应产物再和重氮盐(如固蓝 RR 盐、固蓝 BB 盐等)及其它化合物反应产生不溶性的染料而沉淀。a b a2 a1 a2 bb2 b1 图 1等 位 酶 标 记 的 原 理 与 流 程 ( 以
9、基 因 型 为 ab单 体 酶 为 例 ) 。 等 位 基 因 a和 b实 际 上 是 不同 核 苷 酸 序 列 的 DNA链 a1和 b, 通 过 转 录 和 翻 译 , 编 码 大 小 和 构 象 不 同 的 蛋 白 质 亚 基a2和 b, 通 过 电 泳 可 将 亚 基 2和 分 离 。 根 据 蛋 白 质 亚 基 在 凝 胶 上 表 现 出 的 带 谱 可 推 知基 因 型 。 383最常见的染色方法是电子传递染料染色法中的 MTT(噻唑蓝)染色法。这种反应把辅酶(NAD )或辅酶(NADP )和吩嗪甲硫酸(PMS )耦联使用。当脱氢酶催化反应时,辅酶或辅酶变成了还原型辅酶(NADH)
10、或还原型辅酶(NADPH ) ,通过PMS 的传递还原作用,还原型辅酶或还原型辅酶再变回辅酶或辅酶,同时四唑盐(MTT 或 NBT)则变成了蓝紫色的、不溶性的染料 formazan。该染料的位置就是脱氢酶在凝胶上的位置。相对较为困难的是酶谱的判读。对酶谱上呈现的带谱进行解释需要深入理解每一种等位基因变异的遗传学基础(Richardson et al. 1986, Wendel & Weeden 1989)。下面以自然界中最常见的二倍体生物为例,说明具有不同蛋白质亚基数目的等位酶的酶型(zymotype) 。1 单体酶(monomeric enzyme)单体酶仅由一个蛋白质亚基组成。如果个体在编
11、码某一单体酶的一个特定位点是基因型为 a1a1 的纯合子,由于该位点两个等位基因完全相同,经过转录、翻译,各自编码出的多肽链也完全相同,都是 A1,在酶谱上表现为一条带。如果某个体在该位点是基因型为a1a2 的杂合子,这两个不同的等位基因将编码出 A1 和 A2 两种不同的多肽链,而且这两种不同的多肽链都能单独形成有活性的酶,即都能被染色。这两条多肽链由于大小、构象、带电量等方面的差异,在电场中具有不同的迁移率,从而在酶谱上表现出两条带(图 2) 。与该位点的 a1a1 纯合子相比,由于杂合子只有一个等位基因 a1 编码多肽链 A1,所以杂合基因型个体编码的多肽链 A1 的浓度是纯合子编码的
12、A1 的浓度的一半。在酶初始浓度相同的条件下,酶谱中杂合子 a1a2 在多肽链 A1 位置,带的浓度只是纯合子 a1a1 的一半。2 二聚体酶(dimeric enzyme)1 A 2 A2 A1 a2 a1 酶 型 基 因 型 a1 a12 a2 纯 合 子 杂 合 子 纯 合 子 等 位 基 因 图 2 单 体 酶 在 一 个 具 有 2个 等 位 基 因 的 二 倍 体 植 物 种 群 中 的 带 型 模 式 图 。酶 型 符 号 前 面 的 数 字 代 表 浓 度 比 。 ( 参 见 王 中 仁 196) 1 A 1 A2 A2 A1 a2 a1 酶 型 基 因 型 a1 a12 a2
13、 纯 合 子 杂 合 子 纯 合 子 等 位 基 因 图 3 二 聚 体 酶 在 一 个 具 有 2个 等 位 基 因 的 二 倍 体 植 物 种 群 中 的 带 型 模 式 图 。 酶 型 符 号 前 面的 数 字 代 表 浓 度 比 。 ( 参 见 王 中 仁 196) 纯 合 二 聚 体 杂 合 二 聚 体 纯 合 二 聚 体 384二 聚 体 酶 由 两 个 蛋 白 质 亚 基 组 成 。 对 于 一 个 二 倍 体 植 物 个 体 , 一 个 二 聚 体 酶 的 指 定 位 点如 果 是 基 因 型 为 a1a1 的 纯 合 子 , 其 两 个 完 全 相 同 的 等 位 基 因 编
14、 码 出 来 的 多 态 链 也 完 全 相 同 ,都 是 A1, 任 意 两 条 多 肽 链 形 成 的 二 聚 体 酶 都 是 A1A1, 在 酶 谱 上 表 现 为 一 条 带 。 如 果 某 个 体在 该 位 点 是 基 因 型 为 a1a2 的 杂 合 子 , 等 位 基 因 a1 产 生 多 肽 链 A1, 等 位 基 因 a2 产 生 多 肽 链A2, 在 形 成 二 聚 体 酶 时 , 这 两 种 不 同 的 多 肽 链 可 以 自 由 组 合 , 形 成 A1A1、 A1A2、 A2A2 三种 不 同 的 二 聚 体 酶 型 , 在 酶 谱 上 表 现 为 三 条 带 。 而
15、 且 , 这 三 种 酶 型 的 浓 度 比 遵 从 自 由 组 合规 律 , 即 1 A1A1、 2 A1A2、 1 A2A2( 图 3) 。由 三 个 及 三 个 以 上 亚 基 组 成 的 等 位 酶 、 或 者 有 两 个 以 上 等 位 基 因 的 等 位 酶 、 多 倍 体 生物 的 等 位 酶 、 以 及 有 哑 等 位 基 因 ( null allele) 或 重 复 位 点 存 在 的 等 位 酶 的 酶 型 相 对 比 较 复 杂 ,在 此 不 作 讲 述 , 有 兴 趣 的 同 学 可 参 阅 王 中 仁 ( 1996) 。酶 谱 正 确 判 译 后 , 我 们 就 可
16、以 得 到 各 种 群 、 各 位 点 的 等 位 基 因 频 率 和 基 因 型 频 率 , 这就 是 遗 传 多 样 性 ( genetic diversity) 、 交 配 系 统 等 分 析 的 最 基 本 数 据 。 现 在 有 很 多 软 件 用 来 分析 等 位 酶 数 据 , 如 BIOSYS 系 列 软 件 、 Popgene、 TFPGA、 MLT 等 。分子标记与交配系统交配系统是生物有机体通过有性繁殖将基因从一代传递到下一代的模式,包括控制配子结合以形成合子的所有属性(Barrett & Eckert 1990) ,简单地说,就是指谁与谁交配以及它们的交配方式与频率(见
17、张大勇、姜新华 2001) 。母本的自交率和父本的繁殖成功率是植物交配系统研究中最重要的两个参数。植物的交配受传粉者的行为(或风、水等非生物传粉媒介)以及影响传粉后生殖成功的一些过程的控制。遗传标记使我们得以洞悉植物种群中出现的各种交配模式。一、分子标记与自交率的测量植物交配系统研究的一个重要方面就是度量自交和异交的相对频率,即自交率(Schemske & Lande 1985, Barrett & Eckert 1990, Brown 1990)以及其它一些与之相关的参数,如异型花柱物种的型间交配(Barrett et al. 1987, Kohn & Barrett 1992) 、近交衰退
18、(Ritland 1984, Brown 1990)等。根据不同生长时期(种子、幼苗、成体)后代的基因型可以估测自交率。尽管现在有些研究仍然根据一些特定的、具有遗传基础的表型特征(如植物的缺绿表型)作为标记进行自交率的估测(Klekowski 1992, Chen & McDonald 1996) ,但自 20 世纪 70 年代初开始将分子标记用于植物交配分析以来,已经对近 300 种植物种群的交配系统进行了研究。要想准确地掌握植物交配系统的信息,最终需要对交配系统参数进行直接测定。迄今为止,已经有许多遗传标记被用于交配系统参数的估计,如最先应用的形态标记(Vasek 1964, HumpHr
19、eys & Gale 1974, Motten & Antonovics 1992)和等位酶标记(Ritland & Ganders 1985, Schemske & Lande 1985, Barrett & Eckert 1990, Brown 1990) 。毫无疑问,等位酶标记作为一种能提供一定遗传多态性的共显性标记,已经成为了植物交配系统参数估计385的常规方法(Brown et al. 1989) 。但由于等位酶标记能检测出的多态性相对较低,在多样性较低的物种中的应用会受到一定的限制。不过,尽管如此,等位酶标记仍然是植物交配系统分析中利用得最广泛的技术(Cruzan 1998) 。在
20、 PCR 技术的推动下,各种 DNA 指纹分析技术的发展为植物交配系统参数的估计提供了新的手段。RAPD、SSR 、ISSR 等分子标记都可用来研究植物的自交率。尽管 RAPD 和 ISSR 标记都是显性标记,只表达表型显性的带,不能鉴别杂合子,用来分析自交率结果可能会有些偏差,但是,这两种标记都能提供大量的遗传变异信息,每个位点提供的信息不足可以通过大量的位点来弥补。Fritsch & Rieseberg(1992)采用 RAPD 标记对四数木科(Datiscaceae)自交可育植物 Datisca glomerata 的自交率进行了估计。而 SSR 标记不仅能提供大量的遗传变异信息,能检测
21、出高水平的等位基因变异,而且还是一个共显性标记,它综合了等位酶标记和 RAPD 等显性分子标记的优点,所以在植物交配系统参数估计方面,SSR 标记的应用可能更有前景。新近发展起来的 SNPs 标记实验相对简单,尽管比 SSR 的变异水平低,但是基因组中广泛存在 SNPs 可以弥补这一缺陷,今后可能将成为植物交配系统分析的主要标记。Goodwillie(2000 )利用等位酶标记考察了 Linanthus 属两种一年生植物的异交率及其与近交衰退的关系。每个种群分析 30-32 个家系(family ) ,每个家系分析 10 个子代。采用淀粉凝胶电泳对硫辛酰胺脱氢酶(diapHorase, DIA
22、) 、苹果酸脱氢酶( malate dehydrogenase, MDH) 、 6磷酸葡萄糖脱氢酶(6-pHospHogluconate dehydrogenase, 6PGD)等 8 个酶系统进行了等位酶分析,利用其中 3 个多态位点(DIA、MDH、6PGD)的等位基因频率数据,根据 MLT 计算出各个种群的异交率(图 4) 。并就 L. bicolor 和 L. jepsonii 的自交率和近交衰退进行了比较,结果发现 L. bicolor 的异交率较低(即自交率较高) ,其近交衰退反而更低。很好地支持了近交衰退随自交率的增加而降低这一理论预测(Goodwillie 2000) 。二、分
23、子标记与亲本分析估计出了自交率,只解决了植物交配系统的一个方面,即“交配的频率”问题。交配系统研究的另一个目标就是解决“谁与谁交配”的问题,换句话说,就是确定每个后代的父本和母本,即亲本分析。亲本分析主要是通过观察或采用遗传标记构建种群的谱系,判0.10.2.30.41234560.10.2.30.4 异交率(t) 近交衰退() CR MH PC LR MH WR Linathus bicolr . jepsoni 图 4 Linathus bicolr和 L. jepsoni两 种 一 年 生 植 物 的 异 交 率 ( 白 柱 )和 近 交 衰 退 ( 黑 柱 ) 。 其 中 ,. bic
24、lr在 种 群 MH中 没 有 等 位 酶 多 态 位点 , 故 无 法 根 据 LT计 算 异 交 率( 数 据 引 自 Godwile, 20) 。 386定种子(或幼苗)是由哪个成体自交或由哪两个成体异交产生的。在有花植物中,母体和子代的关系相对比较清楚,所以植物的亲本分析实际上主要就是父系分析(paternity analysis) 。植物的父系主要来自花粉的传播,通常由昆虫、鸟类、甚至蜥蜴等生物媒介或风、水等非生物媒介来完成。所以,植物的父系分析基本上等同于花粉来源的鉴定。等位酶标记由于其共显性曾经在植物的父系分析中发挥了积极的作用(Avise 1994) 。但是等位酶标记的多态性较
25、低,大多数情况下,都不能很好的进行父系分析。RAPD、ISSR 和 AFLP 作为显性标记,由于不能区别杂合子和纯合子,解决自交率、父系分析、计算杂合度等问题效果不佳。但 SSR 标记是共显性标记,它具有等位酶分析的全部功能,而且 SSR 指纹在真核生物基因组中广泛分布又处在基因组的高变区,能检测出更多的遗传多态性,是植物父系分析的强有力工具(表 1) 。表 1 应用于植物交配系统和基因流研究的几种遗传标记的比较(据邹喻苹等 2001 修改)自交率 父系分析 传粉后过程 基因流 克隆鉴定等位酶 RFLP RAPD AFLP ISSR SSR SNPs “”适合; “”勉强可用,但不太好; “”
26、不适合。 图 10-8 当 今 法 国 16个著 名 葡 萄 品 种 与 其 亲 本PinotGouais blanc在VMD5( 上 ) 和28( 下 ) 两 个 位点 上 的 SR指 纹 图 谱 。P、 G分 别 代 表 亲 本inot和 ouais blanc,数 字 15分 别 代 表Aligote等 1个 葡 萄 品种 ( 引 自 Bowers et al., 19) 。 SSR 标记进行父系分析的主要问题可能在于某些微卫星位点上存在哑等位基因(null alleles) (Jones & Ardren 2003 ) 。微卫星哑等位基因主要是由位点侧翼序列的多态性造成的,因此某些等位
27、基因缺乏有功能的 PCR 起始位点(Callen et al. 1993, Jones et al. 1998) 。包含哑等位基因的杂合子往往被错误地检测为纯合子,从而引起错误的亲本排除。例如,某一个子代的基因型实际为 A/n(n 表示哑等位基因) ,那么基因型为 B/n 和 C/n 的个体有可能是 A/n 的亲本;但由于哑等位基因不具有 PCR 起始位点,不能被扩增检测,所以检测的结果分别为 A/A、B/B、C/C,从而排除了 B/B 和 C/C 作为 A/A 亲本的可能性,得到错误的结果(Jones & Ardren 2003) 。总的说来,目前应用 DNA 指纹技术对植物进行父系分析的例
28、子还不太多,但 SSR 和 SNPs 进行父系分析的潜力还是显而易见的。Bowers et al.(1999)根据 32 个微卫星位点对 322 个葡萄品种谱系的研究可以说是用SSR 标记对植物进行父系分析的代表之作。欧洲著名的葡萄品种的起源问题一直受到广泛的关注。有证据表明现存的葡萄品种都已有数百年的历史,而且一般都是通过野生品种的栽培驯化、野生品种和栽培品种或者栽培品种之间的杂交等方式产生的。Bowers et al.( 1999)收集了 322 个葡萄品种,先用 17 个 SSR 位点对任意可能的 3 个品种组合的等位基因进行了比较,确定哪两个品种杂交可能产生第三个品种,然后用另外的 1
29、5 个 SSR位点这些组合具体的谱系关系。结果发现,包括 Aligote 在内的 16 个著名葡萄品种都是387PinotGouais blanc 这一对亲本在不同时间和不同地点多次杂交产生的后代(图 5) 。三、传粉后繁殖行为传粉后的繁殖行为对植物的交配方式也有一定的影响。一般说来,异交花粉比自交花粉更有优势(Weller & Ornduff 1977, Bowman 1987, Cruzan & Barrett 1993, Jones 1994) ,但很难分清异交花粉和自交花粉的这种差异是由花粉管生长速率不同引起的,还是由二者导致不同程度的胚珠败育引起的。利用遗传标记技术和人工杂交,我们可
30、以对传粉后的繁殖行为进行更直接的观察。Rigney (1995)利用大花猪牙花(Erythronium grandiflorum) 设计了一个非常精巧的研究胚珠败育模式的实验。Rigney 发现去除大花猪牙花的子房壁后,仍能观察到用标记过的花粉受精后胚珠的生长。当胚珠表现出败育的迹象时,将其切除,利用等位酶标记进行检测,发现绝大多数败育的胚珠都是经自交花粉受精的。换句话说,异交花粉比自交花粉更有优势,是因为由自交花粉受精的胚珠更容易败育(Rigney 1995) 。由于遗传标记研究简单而实用,所以,它极有可能在传粉后繁殖行为的研究中发挥重要作用。等位酶标记和 SSR 标记由于其共显表达在这一领
31、域的作用尤为明显。但是,等位酶标记分析的一个弊端在于胚胎发生早期表达的父本酶(paternal enzymes)比较少(Rigney 1995) 。而 SSR 和 SNPs 标记能用相对较少的 DNA(如单个花粉粒或发育早期的胚珠)进行 PCR 扩增,将会越来越适合对花粉管生长和受精后胚珠败育等传粉后繁殖行为进行深入研究。【实验目的】1 掌握等位酶分析技术;图 5 当 今 法 国 16个 著名 葡 萄 品 种 与 其 亲 本PinotGuais blnc在VMD5( 上 ) 和28( 下 ) 两 个 位点 上 的 SR指 纹 图 谱 。P、 G分 别 代 表 亲 本inot和 ouais bl
32、nc,数 字 15分 别 代 表Aligte等 个 葡 萄 品种 ( 引 自 Bowers tal., 19) 。 3882 能够运用等位基因频率分析植物种群的自交率;【实验器材】电炉培养箱稳压稳流电源组(电泳仪)电泳槽天平(0.001g)pH 计搅拌器冰箱培养皿(120mm)瓷比色盘三角瓶(50mL)试管(12mm 或 14mm)移液器台式高速离心机容量瓶烧杯洗瓶【试剂】1. Tris-HCl 提取缓冲液Tris-HCl 缓冲液(0.1mol/L, pH 7.5)2. Tris-甘氨酸电极缓冲液(0.2mol/L, pH 8.3)3. 聚丙烯酰胺凝胶配制1) 制胶储液:A30%Acr-0.8
33、%Bis 储液Acr 30g (丙烯酰胺( Acrylamide) )Bis 0.8g (N-N-亚甲基双丙烯酰胺(N-N-Methylene-bis-acrylamide) )加水至 100mL,过滤B1mol/L Tris-HCl 缓冲液( pH 8.8)Tris 30.3g用 HCl(1mol/L) 调 pH 至 8.8,用容量瓶定容到 250mLC0.5mol/L Tris-HCl 缓冲液( pH 6.8)Tris 3.03g389用 HCl(1mol/L) 调 pH 至 6.8,用容量瓶定容到 50mLD1%过硫酸铵(AP)溶液过硫酸铵 0.2g溶于 20mL 水中4. 染液配制a.
34、 Tris-HCl 缓冲液(0.05mol/L, pH 8.0)b. Tris-HCl 缓冲液(0.2mol/L, pH 8.0)c. 磷酸缓冲液(0.1mol/L, pH 6.0)d. -萘乙酸( 1g/100mL 丙酮,-napHthyl acetate)e. -萘乙酸( 1g/100mL 丙酮,-napHthyl acetate)f. 辅酶 II( NADP, 0.5%)g. 噻唑蓝(MTT, 1%)h. 吩嗪钾硫酸(PMS, 1%)【方法与步骤】一、 等位酶的提取1 配制提取缓冲液植物等位酶提取的缓冲液组成有多种,最常用的是 Tris-HCl 复杂提取缓冲液,其组成如下:0.010g
35、乙二胺四乙酸,四钠盐(EDTANa 4, 0.001mol/L)0.019g 氯化钾(KCl, 0.01mol/L)0.050g 氯化镁(MgCl 26H2O, 0.01mol/L)1 5g 聚乙烯基吡咯烷酮(PVP 40, 4 20% w/v)1.25 g 蔗糖25.00mL Tris-HCl 缓冲液(0.1mol/L, pH 7.5)把 PVP 放入溶液搅拌溶解,或者水合过夜。放入冰箱保存。使用前按 1-2%(v/v )加入 2-巯基乙醇。PVP 和 2-巯基乙醇的用量可以根据提取效果进行调整。其他几种提取缓冲液的配制可参照王中仁(1996) 。2 样品采集原则上,植物体上任何有活性的部位都可以用来进行等位酶分析,但幼嫩组织的酶活性最高。所以一般采集幼嫩的叶片进行实验。本次实验采用恶性入侵杂草普通豚草(Ambrosia artemisiifolia)的种子为材料,研究其种群水平上的自交率。3 研磨提取在实验室分别将每粒种子或胚置于比色盘中,加入 150uLTris-HCl 提取缓冲液,用试管进行研磨,研磨至材料粉碎为止。用滴管或移液器吸取每个孔中提取出的