1、数学 (八年级上册)知识点总结(北师大版)1数学 (八年级上册)知识点总结(北师大版)第一章 勾股定理1、勾股定理-已知直角三角形,得边的关系直角三角形两直角边 a,b 的平方和等于斜边 c的平方,即 22cba2、勾股定理的逆定理-由边的关系,判断直角三角形如果三角形的三边长 a,b,c 有关系 ,那么这个三角形是直角三角形。22ba3、勾股数:满足 的三个正整数 a,b,c,称为勾股数。22常见的勾股数有:(6,8,10) (3,4,5) (5,12,,13) (9,12,15) (7,24,25) (9,40,41)规律:(1) 、短直角边为奇数,另一条直角边与斜边是两个连续的自然数,两
2、边之和是短直角边的平方。即当 a为奇数且 ab 时,如果 ,那么 a,b,c就是一组勾股数.2ca如:(3,4,5) (5,12,,13) (7,24,25) (9,40,41)(2)大于 2的任意偶数,2n(n1)都可构成一组勾股数分别是: 2,1n如:(6,8,10) (8,15,17) (10,24,26)4、常见题型应用:(1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积(2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度/斜边上的高线/周长/面积(3)判定三角形形状:锐角三角形, 直角三角形, 钝角三角形22abc22abc22abc判定直角三角形a.找最长边
3、;b.比较长边的平方与另外两条较短边的平方和之间的大小关系;c.确定形状第二章 实数1. 无理数的引入。无理数的定义无限不循环小数。数学 (八年级上册)知识点总结(北师大版)22 02000223. .无 理 数 的 表 示 算 术 平 方 根 定 义 如 果 一 个 非 负 数 的 平 方 等 于 , 即那 么 这 个 非 负 数 就 叫 做 的 算 术 平 方 根 , 记 为 ,算 术 平 方 根 为 非 负 数平 方 根 正 数 的 平 方 根 有 个 , 它 们 互 为 相 反 数的 平 方 根 是负 数 没 有 平 方 根定 义 : 如 果 一 个 数 的 平 方 等 于 , 即 ,
4、 那 么 这 个 数 就叫 做 的 平 方 根 , 记 为立 方 根 正 数 的 立 方 根 是 正 数负 数 的 立 方 根 是 负 数的 立 方 根 是定 义 : 如 果 一 个 数 的 立 方 等 于 , 即 , 那 么 这 个 数就 叫 做 的 立 方 根 , 记 为 xaxxaaxaxaxxa 30.实 数 及 其 相 关 概 念 概 念 有 理 数 和 无 理 数 统 称 实 数分 类 有 理 数无 理 数 或 正 数负 数绝 对 值 、 相 反 数 、 倒 数 的 意 义 同 有 理 数实 数 与 数 轴 上 的 点 是 一 一 对 应实 数 的 运 算 法 则 、 运 算 规
5、律 与 有 理 数 的 运 算 法 则运 算 规 律 相 同 。一、实数的概念及分类 1、实数的分类 无 限 不 循 环 小 数负 无 理 数正 无 理 数无 理 数 数有 限 小 数 与 无 限 循 环 小负 有 理 数正 有 理 数有 理 数实 数 0负 实 数正 实 数实 数 0数学 (八年级上册)知识点总结(北师大版)32、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如 等根号 a(a 为非完全平方数或非立方数) 。32,7(2)有特定意义的数,如圆周率 (=3.14159265),或化简后含有 的数,如 +8等
6、;3(3)有特定结构的数,如 0.1010010001;0.585885888588885(相邻两个 5 之间 8 的个数逐次加 1 等;(4)某些三角函数值,如 sin60o等; 二、实数的倒数、相反数和绝对值 1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零) ,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果 a与 b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。 (|a|0) 。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则 a0;若|a|=-a,则 a0。3
7、、倒数如果 a与 b互为倒数,则有 ab=1,反之亦成立。倒数等于本身的数是 1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可) 。数学 (八年级上册)知识点总结(北师大版)4解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算. 注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆: 41.2 732. 36.5.三、平方根、算数平方根和立方根 1平方根和算术平方根:(1)概念:如果 ,那么 是 的平方根,记作: ;读作“正、负根号 ”,2xaxaa其中 叫做 的算术平方根,读作根号
8、。(2)性质:当 0 时, 0; 当 时, 无意义;a ; 。 (区分、)2a2性质:正数和零的算术平方根都只有一个,零的算术平方根是零。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。(3)开平方:求一个数 a的平方根的运算,叫做开平方。注意 : 的双重非负性:0 ( 开 平 方 的 被 开 方 数 的 条 件 )( 算 术 平 方 根 的 非 负 性 )2立方根:(1)概念:若 ,那么 是 的立方根(或三次方根) ,记作: ; 3xax 3a(2)性质: ; ; 3a3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意: , 这说明
9、三次根号内的负号可以移到根号外面。33a区分:平方根、立方根的性质根源:开平方是平方的逆运算;开立方是立方的逆运算。正数和负数的平方后为正,所以,只有非负数才可以开平方,因此一个非 0 正数开平方后有 2 个;而任何数的立方后的符号与原数的符号一致,所以,任何数都可以开立方,一个数开立方后只有 1 个,符号与原数的符号也一致。四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,数学 (八年级上册)知识点总结(北师大版)5右边的总比左边的大;两个负数,绝对值大的反而小。在数轴上,右边的点表示的数比左边的点表示的数大。2、实数大小比较的几种常用
10、方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设 a、b 是实数,,0,0baba0(3)求商比较法:设 a、b 是两正实数, ;1;1;1(4)绝对值比较法:设 a、b 是两负实数,则 。(5)平方法: 设 ,则 0,2ab 设 ,则 。ab 同号的有理数与无理数、同号的无理数与无理数大小比较时常用平方法。如:比较 与 ; 与362.4365(6)倒数法:设 ,则 ;设 ,则0,ab1ab0,ab1ab规律:同号取倒(数)反向五、算术平方根有关计算(二次根式)1、含有二次根号“ ”; 被开方数 必须是非负数,即: 。a0a中2、性质:(1)非负性 0a(2
11、) ( 中前提,被开方数 ))()(22a0a(3) ( 中隐含被开方数 )a2,(0)22数学 (八年级上册)知识点总结(北师大版)6(4) ;( ) (前提根号要有意义))0,(baab )0,(baba(5) ;( ) (前提式子和根号要有意义, )),(b ),0(b拓展:三个重要非负数: .注意:非负数之和为 0 它们都是 0.20,aa3、运算结果若含有“ ”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号
12、,就先算括号里面的。(3)运算律加法交换律 ab加法结合律 )()(cc乘法交换律 乘法结合律 )()(ba乘法对加法的分配律 c(4)与实数有关的概念: 在实数范围内,相反数,倒数,绝对值的意义与有理数范围内的意义完全一致;在实数范围内,有理数的运算法则和运算律同样成立。每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数,即实数和数轴上的点是一一对应的。因此,数轴正好可以被实数填满。第三章 位置的确定一、 在平面内,确定物体的位置一般需要两个数据。二、平面直角坐标系及有关概念 1、平面直角坐标系数学 (八年级上册)知识点总结(北师大版)7一一0xy0xyPab(+
13、,-)(-,)(-,+) (+,)0xyBACDx223y3y1x1440xyA(x1,0)D(,y4)B(0,y2)C(x3,) 450xyBACD在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做 x轴或横轴,取向右为正方向;铅直的数轴叫做 y轴或纵轴,取向上为正方向;x 轴和 y轴统称坐标轴。它们的公共原点 O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。2、为了便于描述坐标平面内点的位置,把坐标平面被 x轴和 y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。注意:x 轴和 y轴上的点(坐标轴上的点) ,不属于任何一个
14、象限。3、点的坐标的概念对于平面内任意一点 P,过点 P分别 x轴、y 轴向作垂线,垂足在上 x轴、y 轴对应的数 a,b分别叫做点 P的横坐标、纵坐标,有序数对(a,b)叫做点 P的坐标。点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“, ”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当 时, ( a,b)和(b,a)是两个不同点的坐标。平面内点的与有序实数对是一一对应的。4、不同位置的点的坐标的特征 (1) 、各象限内点的坐标的特征(结合图形,过点 P分别 x轴、y 轴向作垂线,垂足在上 x轴、y 轴对应的数 在坐标轴的,x正向为正,负向为负)点 在第一象
15、限1(,)Axy110,y点 在第二象限 2B22x点 在第三象限3(,)Cxy33,y点 在第四象限4D440x(2) 、坐标轴上的点的特征点 P(x,y)在 x轴上 ,x 为任意实数y点 P(x,y)在 y轴上 ,y 为任意实数0点 P(x,y)既在 x轴上,又在 y轴上 x,y 同时为零,即点 P坐标为(0,0)即原点(3) 、两条坐标轴夹角平分线上点的坐标的特征点 P(x,y)在第一、三象限夹角平分线(直线 y=x)上 x与 y相等数学 (八年级上册)知识点总结(北师大版)80xyFEGH点 P(x,y)在第二、四象限夹角平分线上 x与 y互为相反数(4) 、和坐标轴平行的直线上点的坐
16、标的特征位于平行于 x轴的直线上的各点的纵坐标相同。位于平行于 y轴的直线上的各点的横坐标相同。(5) 、关于 x轴、y 轴或原点对称的点的坐标的特征 点 P与点 关于 x轴对称(上下) 横坐标相等,纵坐标互为相反数,即点 P(x,y)关于 x轴的对称点为 (x,-y)P 点 P与点 关于 y轴对称(左右) 纵坐标相等,横坐标互为相反数, 即点 P(x,y)关于 y轴的对称点为 (-x,y) 点 P与点 关于原点对称 横、纵坐标均互为相反数,即点 P(x,y)关于原点的对称点为 (-x,-y)P规律:关于谁对称谁不变,另一个变相反;关于原点对称,两个分别变相反。(6)、点到坐标轴及原点的距离(
17、结合图形理解)点 P(x,y)到坐标轴及原点的距离:(1)点 P(x,y)到 x轴的距离等于 y(2)点 P(x,y)到 y轴的距离等于 x(3)点 P(x,y)到原点的距离等于 (由勾股定理可得)2y三、坐标变化与图形变化的规律:坐标( x , y )的变化 图形的变化 x a或 y a 被横向或纵向拉长(压缩)为原来的 a 倍 x a, y a 放大(缩小)为原来的 a 倍 x ( -1)或 y ( -1) 关于 y 轴或 x 轴对称 x ( -1), y ( -1) 关于原点成中心对称 或 ,其中a0a沿 x 轴( )左(+)右或 y 轴(+)上( )下平移 a 个单位 0xyP(x,)
18、P(-x,y)x-0xyP(,y)P(x,-y)-y0 xyP(x,y) P(-x,y)y-yx -x数学 (八年级上册)知识点总结(北师大版)9, ,其中xay0a沿 x 轴( )左( +)右平移 a 个单位,再沿 y 轴(+ )上( )下平移 a 个单第四章 一次函数一、函数:一般地,在某一变化过程中有两个变量 x与 y,如果给定一个 x值,相应地就确定了一个 y值,那么我们称 y是 x的函数,其中 x是自变量,y 是因变量。二、自变量取值范围使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数) ,分式(分母不为 0) 、二次根式(偶次根式) (被开方数为非负数
19、) 、实际意义几方面考虑。三、函数的三种表示法及其优缺点(1)关系式(解析)法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。(2)列表法把自变量 x的一系列值和函数 y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。(3)图象法用图象表示函数关系的方法叫做图象法。四、由函数关系式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。五、正比例函数和一次函数 1、正比例函数和一次函数的概念一
20、般地,若两个变量 x,y 间的关系可以表示成 (k,b 为常数,k 0)的形式,则xy称 y是 x的一次函数(x 为自变量,y 为因变量) 。数学 (八年级上册)知识点总结(北师大版)10特别地,当一次函数 中的 b=0时(即 ) (k 为常数,k 0) ,称 y是 x的正比bkxyxy例函数。2、一次函数的图像: 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:、一次函数 的图像是经过点(0,b)的直线;正比例函数 的图像是kxy kxy经过原点(0,0)的直线。、由于一次函数 的图象是一条直线,所以一次函数 的图象也称为直b线 。ykxb、由于两点确定一条直线,因此在
21、画一次函数 的图象时,只要描出:与 轴的交ykxbx点(令 ,求出 ) ,与 轴的交点(令 ,求出 ) ,即(0yxk0yb两点即可,画正比例函数 的图象时,只要描出点(0,0) , (1, )(,),bkykx k即可。、 的正负决定直线的倾斜方向, 的大小决定直线的倾斜程度,即 越大,直线与 轴k kx相交的锐角度数越大(直线陡) , 越小,直线与 轴的相交的锐角度数越小(直线缓) 。x、 的正负决定直线与 轴交点的位置。by当 时,直线与 轴的交于正半轴上。当 时,直线与 轴交于负半轴上。00by当 时,直线经过原点,是正比例函数,正比例函数是一次函数的特例。4、一次函数、正比例函数的图象和性质。 当 0 时, 随 的增大而增大,图象从左到右呈上升趋势;kyx当 0 时, 随 的增大而减小,图象从左到右呈下降趋势。函 数 图 象 性 质