1、工程光学,郭 峰青岛理工大学 机械工程学院,Engineering Optics,Engineering Optics Dr. F. Guo QTECH Spring 2016,第8章 光的电磁理论基础,8.1 电磁场基本方程8.2 光波在介质界面上的反射和折射8.3 光波的偏振特性8.4 光波的叠加,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1 电磁场基本方程 Maxwell Equation,光的电磁理论的提出是人们在电磁学方面已有了深入研究的结果。1864年麦克斯韦把电磁规律总结为麦克斯韦方程组,建立起完整的经典电磁理论,同时指出
2、光也是一种电磁波,从而产生了光的电磁理论。到目前为止,它仍然是阐明大多数光学现象以及掌握现代光学的一个重要基础。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.1 电磁场的基本认识1:静电场、静磁场及其表现 在静止电荷周围有静电场,在恒定电流周围有静磁场。 电场的表现为:处在电场中的带电物质要受到电场力的作用,这个力的大小和方向与描述电场的物理量电场强度E有关。 磁场的表现为:处在磁场中的带电物质要受到磁场力的作用,这个力的大小和方向与描述磁场的物理量磁感应强度B有关。 电场和磁场由带电物质及其运动产生,并通过对带电物质的作用而表明其存
3、在。2:电磁场是矢量场:E和B都是矢量3:电荷做加速运动时,所产生的电磁场将随着时间变化, E和B不仅是位置坐标的函数,还是时间的函数。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.2 积分形式的麦克斯韦方程组,变化的磁场可以产生电场,电场不定要由电荷产生,变化的磁场产生电场, 是法拉第电磁感应定律的个形式。式中的负号表示出变化磁场所产生的电场具有阻碍磁场变化的趋势。,E - 电场强度; B 磁感应强度,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.2 积分形式的麦克斯韦方程组
4、,上式是高斯定律的常用形式。右端被积量是空间自由电荷密度,积分域是某一体积,积分值是该体积内的总自由电荷密度。,D: 描述电场的量,称为电通密度(矢量)或电位移(矢量),E: 媒质中的电场强度0: 真空的介电常数,P: 是电极化强度(矢量), 对空气, 玻璃等 P = 0,相对介电常数,,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.2 积分形式的麦克斯韦方程组,D.ds: 流过面元ds的电通量,积分表示自体积内部通过封闭曲面向外流出的电通量,其数量等于上式右端的总自由电荷. -空间自由电荷密度,Engineering Optics D
5、r. F. Guo QTECH Spring 2016,8.1.2 积分形式的麦克斯韦方程组,磁场高斯定律, 而右端恒为零。这意味着流入和流出任一封闭曲面的磁通量永远相等,磁场没有起止点。 右端不出现类似电荷的“磁荷”项,是因为迄今没有在实验上找到单独的磁荷,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.2 积分形式的麦克斯韦方程组,麦克斯韦-安培定律,H : 磁场强度, H = B/, : 磁导率,J : 电流密度, J.ds 流过面元ds的电流强度. :位移电流密度,单位,电场强度 E: V/m, N/C;磁感应强度 B: T, W
6、b/m2, N/(A. m);电通密度 D: C/m2; 磁场强度 H: A/m,电流产生环形磁场,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.3 微分形式的麦克斯韦方程组,格林定理,斯托克斯公式,磁通变化环形电场,电位移矢量起止于存在自由电荷的地方,位移电流同普通电流皆可产生环形电场,磁场无起止点,散度和旋度描述考察点周围场的方向和大小是如何随空间变化的。一个矢量在某点的散度表征了该点产生或吸收这种场的能力。一个矢量在某点的旋度表征了场在该点周围的旋转情况。,Engineering Optics Dr. F. Guo QTECH S
7、pring 2016,8.1.4 物质方程,电导率; 介电常数; 磁导率,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.5 均匀、各向同性、透明、无源媒质中电磁波,空气与玻璃等满足均匀、各向同性、透明、无源媒质,均匀、各向同性:,与位置无关。透明: 0, J = 0。无源:0。,则微分方程写为,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.5 均匀、各向同性、透明、无源媒质中电磁波,由(82)可得:,Engineering Optics Dr. F. Guo QTECH Spri
8、ng 2016,8.1.5 均匀、各向同性、透明、无源媒质中电磁波,同理,Engineering Optics Dr. F. Guo QTECH Spring 2016,, v 为波动传播速度.,8.1.5 均匀、各向同性、透明、无源媒质中电磁波,真空中波的传播速度,介质的折射率:n = c/v,Engineering Optics Dr. F. Guo QTECH Spring 2016,谐函数波动表示(一维),时间周期 T,频率 ,圆频率 :,空间周期(波长) ,空间频率f ,空间圆频率波数 k:,8.1.5 均匀、各向同性、透明、无源媒质中电磁波,v 为波的传播速度,空间与时间参量的关系
9、:,空间参量:,时间 参量:,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.5 均匀、各向同性、透明、无源煤质中电磁波,平面波的复数表示,Euler公式,波动方程又可写为,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.5 均匀、各向同性、透明、无源煤质中电磁波,为复振幅,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.5 均匀、各向同性、透明、无源煤质中电磁波,位相,波的传播即位相的传播.,位相速度即某一确定位相值在空间传播
10、的速度。如果z处t时刻的位相值经过d t 时间后传播到z+dz处,即,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1.6 任意方向传播的平面波,对于沿任一方向传播的平面波,引入波矢量k, 其大小为波数 k, 方向为波面(等相面)垂直方向。 建立s 轴, 方向与波矢量一致. 电场量以矢量E表示,存在以下关系,Engineering Optics Dr. F. Guo QTECH Spring 2016,复振幅,表示某时刻光波的空间分布,只关心其场振动的空间分布时,常常用复振幅表示一个简谐光波,不再加以说明。,Engineering Opti
11、cs Dr. F. Guo QTECH Spring 2016,8.1.6 平面电磁波的性质,电磁波是横波;,E 和 B 两者数值关系:,1 由微分形式的Maxwell方程组,可以得到,以上表达式表明: E,B, k三矢量互相垂直,E 和 B 同相位,Engineering Optics Dr. F. Guo QTECH Spring 2016,2 电磁波传递的能量,单位时间内穿过与波矢量k相垂直的单位面积的能量,坡印廷(Poynting)矢量,3 电磁波的强度(光强),时间平均值,线偏振简谐电磁波的强度正比于电场(或磁场)的振幅的平方。在同一媒质中比较不同的地点的强度,如果只关心强度分布,可
12、以直接用振幅的平方表征光强。,空间某一区域中单位体积的辐射能可用电磁场能量密度w表示,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2 光波在介质界面上的反射和折射,电场E的边界条件:电场的切向分量总是连续的,8.2.1 边界条件,上式右端的积分域是一个面,左端的积分路径是这个面的周边。我们把这个面取为横跨在界面两侧的个小矩形,其法线与界面平行,矩形的长边也与界面平行,长度 l 远较电磁被波长为小;矩形的短边与界面垂直,即平行于界面法线其长度 h 又远较 l 为小,可当作无限小处理。矩形边正向规定如图为逆时针,d s 的方向自纸面向外,周边
13、C以逆时针方向为正。界面法线方向的单位矢量u 自媒质1指向媒质2。 用E1 和 E2分别表示面积A内媒质1侧和媒质2侧的电场强度。因为A的线度远较波长为小,所以E1 和 E2以分别当作常数。如果分别用l1 和 l2表示小矩形在媒质1、2内的有向边长, 则:,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2 光波在介质界面上的反射和折射,电场E的边界条件,8.2.1 边界条件,R 为沿矩形短边的积分,因为h 0, A- 0, 所以该项积分也对近似为零。,Engineering Optics Dr. F. Guo QTECH Spring 20
14、16,电场E的边界条件,8.2.1 边界条件,上式意味着(E2E1)垂室于l2。另一方面,上述小矩形的取法不是唯一的,它可以在原地绕u方向旋转,只要保持l2平行界面,都可以得到(E 2E1)垂直于l2 的结果。所以,在界面上任何地点,在任何时间,都有(E2E1)垂直于界面,或平行于界面法线。该结论可以写成,Engineering Optics Dr. F. Guo QTECH Spring 2016,电场E的边界条件,8.2.1 边界条件,1 和2为E1 与E2和界面的交角。,在界面上,电场的切向分量总是连续的,E1和E2在界面上的投影始终相同,Engineering Optics Dr. F
15、. Guo QTECH Spring 2016,8.2.1 边界条件 电通密度D 的边界条件,上式涉及的积分域是一个体积及其表面。取体积V为一个跨在界面两侧的微小扁平方盒,盒子的上、下表面都平行于界面,分别用Al和A2表示。它们的大小相等,线度均起小于波长,取向均平行于u,但方向相反。盒子高度h趋于零,因此侧面积和体积也均趋于零, 可以当作无限小。这时有,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2.1 边界条件 电通密度D 的边界条件,右端是盒内的总自由电荷, 只要r值有限(即不含有“面电荷”),h -0, V -0,D1和D2在法线
16、力向上的投影是相等的,或者说电通密度场D的法向分量具是连续的。,Engineering Optics Dr. F. Guo QTECH Spring 2016,没有传导电流和自由电荷的介质中,电场强度E和磁场强度H切向分量在界面上连续, 磁通密度B和电通密度D法向分量在界面上连续,8.2 光波在介质界面上的反射和折射,8.2.1 边界条件,Engineering Optics Dr. F. Guo QTECH Spring 2016,2 光的反射与折射定律,8.2 光波在介质界面上的反射和折射,(1)光波的入射面是指界面法线与入射光线组成的平面。 (2)光波的振动面是指电场矢量的方向与入射光线
17、组成的平面,或指电矢量所在的平面。电矢量(光矢量)一般不在入射面内振动。 (3)任一方位振动的光矢量,都可以分解成互相垂直的两个分量,称平行于入射面振动的分量为光矢量的P分量。称垂直于入射面 振动的分量为光矢量的s分量,对任光矢量,只要分别讨论两 个分量的变化情况就可以了。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2 光波在介质界面上的反射和折射,2 光的反射与折射定律,r 原点在界面上的位置矢量,不同的光矢量在同一点的初相位不同,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2
18、光波在介质界面上的反射和折射,2 光的反射与折射定律,电场强度E切向分量在界面上连续,上式在任何时刻t与任何位置r都成立,则,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2 光波在介质界面上的反射和折射,2 光的反射与折射定律,入射,反射,折射共面,与界面法线平行,共面,都在入射面内,Engineering Optics Dr. F. Guo QTECH Spring 2016,3 菲涅尔(Fresnel)公式,8.2 光波在介质界面上的反射和折射,将分别讨论s 波与p波.,Engineering Optics Dr. F. Guo QT
19、ECH Spring 2016,3 菲涅尔(Fresnel)公式,8.2 光波在介质界面上的反射和折射,电场强度和磁场强度切向连续,在非磁性各向同性媒质中,有,Engineering Optics Dr. F. Guo QTECH Spring 2016,3 菲涅尔公式 (Fresnel equations),8.2 光波在介质界面上的反射和折射,得到s波的振幅反射系数(amplitude reflection coefficient)与振幅透射系数(amplitude transmission coefficient),Engineering Optics Dr. F. Guo QTECH
20、Spring 2016,3 菲涅尔(Fresnel)公式,8.2 光波在介质界面上的反射和折射,电场强度和磁场强度切向连续,得到p波的振幅反射系数与振幅透射系数,Engineering Optics Dr. F. Guo QTECH Spring 2016,3 菲涅尔(Fresnel)公式,8.2 光波在介质界面上的反射和折射,当垂直入射,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2 光波在介质界面上的反射和折射,n1 n2, 从光密媒质入射到光疏媒质,全反射,Brewster angle,Engineering Optics Dr.
21、F. Guo QTECH Spring 2016,8.2 光波在介质界面上的反射和折射,Things are a bit less obvious when we deal with the fields parallel to the incidence plane. It now becomes necessary to define more explicitly what is meant by in-phase, since the field vectors are coplanar but generally not colinear. The field directions
22、were chosen such that if you looked down any one of the propagation vectors toward the direction from which the light was coming, E, B, k would appear to have the same relative orientation whether the ray was incident, reflected or transmitted. We can use this as the required condition for two E-fie
23、lds to be in-phase. Equivalently, but more simply, two fields in the incident plane are in-phase if their z- components are parallel and are out-of-phase if the components are anti-parallel. Notice that when the two E-fields are out-of-phase so too are their associated B-fields and vice versa. (Opti
24、cs, Eugene Hecht, 4th edition),相位变化,Engineering Optics Dr. F. Guo QTECH Spring 2016,相位变化,8.2 光波在介质界面上的反射和折射,当光波在电介质表面反射和折射时,由于其折射率为实数,故rs, rp, ts, tp通常也是实数(暂不考虑全反射),随着1的变化只会出现正值或负值的情况,表明所考虑的两个场同相位(振幅比取正值),或者反相(振幅比取负值),其相应的相位变化或是零或是。,n1n2,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2 光波在介质界面上的反
25、射和折射,n1n2,s, p 折射波, 与入射波同相位.,n1n2,s, p 折射波, 与入射波同相位.,Engineering Optics Dr. F. Guo QTECH Spring 2016,反射比(Reflectance)与透射比(transmittance),8.2 光波在介质界面上的反射和折射,入射波,反射波,透射波,Engineering Optics Dr. F. Guo QTECH Spring 2016,反射比与透射比,8.2 光波在介质界面上的反射和折射,对s波与p波,可分别得到,Engineering Optics Dr. F. Guo QTECH Spring 2
26、016,隐失波(倏逝波, evanescent wave),8.2 光波在介质界面上的反射和折射,实验表明,在全反射时光波不是绝对地在界面上全部反射回第一介质,而是透入第二介质大约一个波长的深度,并沿着界面流过波长量级距离后重新返回第一介质,沿着反射光方向射出。其数学表达式如下,when,Critical incidence angle c for total internal reflection,Engineering Optics Dr. F. Guo QTECH Spring 2016,隐失波(倏逝波, evanescent wave),8.2 光波在介质界面上的反射和折射,Accor
27、ding to Fresnel equations,Engineering Optics Dr. F. Guo QTECH Spring 2016,隐失波(倏逝波, evanescent wave),8.2 光波在介质界面上的反射和折射,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.2 光波在介质界面上的反射和折射,波长与速度,Engineering Optics Dr. F. Guo QTECH Spring 2016,3 菲涅尔(Fresnel)公式,8.2 光波在介质界面上的反射和折射,倏逝波,Engineering Optics D
28、r. F. Guo QTECH Spring 2016,全反射,8.2 光波在介质界面上的反射和折射,反射比曲线,Engineering Optics Dr. F. Guo QTECH Spring 2016,全反射,8.2 光波在介质界面上的反射和折射,相位变化,由折射定律:,Engineering Optics Dr. F. Guo QTECH Spring 2016,全反射,8.2 光波在介质界面上的反射和折射,相位变化,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.3 光波的偏振特性,8.3.1 光的偏振态,Engineering
29、Optics Dr. F. Guo QTECH Spring 2016,8.3 光波的偏振特性,3 部分偏振光如果由于外界的作用 , 使自然光某个振动方向上的振动比其他方向占优势 , 就变成部分偏振光。部分偏振光可以看作是完全偏振光和自然光的混合。因而 , 部分偏振光可以 用相互垂直的两个光矢量表示 , 这两个光矢量的振幅不相等 , 相位关系也不确定。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.3.2 椭圆偏振、线偏振和圆偏振,沿z方向传播的平面波, 可表达为沿x, y方向振动的两个独立分量的线性组合,其中,表示传播方向相同, 振动方向
30、相互垂直, 相位差固定的两束线偏振光。,1 椭圆偏振,将上述两式消去(t - kz), 得到,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.3.2 椭圆偏振、线偏振和圆偏振,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.3.2 椭圆偏振、线偏振和圆偏振,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.3.2 椭圆偏振、线偏振和圆偏振,为右旋椭圆偏振光,为左旋椭圆偏振光,Engineering Optics Dr. F. Guo QTEC
31、H Spring 2016,8.3.2 椭圆偏振、线偏振和圆偏振,2 线偏振,当相位差满足,时,椭圆方程变,为直线方程, 称为线偏振光.,m为零或偶数, 光振动在I, III象限, m为奇数, 光振动在II, IIII象限,为右旋圆偏振光,为左旋圆偏振光,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.3.2 椭圆偏振、线偏振和圆偏振,3 圆偏振,当相位差满足,时,椭圆方程变为圆方程, 称为圆偏振光.,当,为右旋圆偏振光,为左旋圆偏振光,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4 光
32、波的叠加,8.4.1 波的叠加原理,波的叠加原理:几个波在相遇点产生的合振动是各个波单独在该点产生的振动的矢量和。叠加原理是波动光学的基本原理。如果有两个光波 E1 和 E2 在空间P点相遇,则据叠加原理,P点的合振动为,1 光波的叠加原理表明了光波传播的独立性。一个光波的作用不会 因为其它光波的存在而受到影响。,2 光波的叠加原理是介质对光波电磁场作用的线性响应的一种反映。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.2 两束平面波的叠加-复指数运算,在P点两束频率相同、传播方向和振动方向相同的平面单色光波为,z是两原光波传播方向上
33、的坐标。合成波为,这个波仍然是一个简谐平面波,时间频率也与原光波相同。并且,其它空间、时间参量及相位速度也都没有变化。所不同的只是合成波有自己的振幅和初相位:,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.2 两束同向传播平面波的叠加-复指数运算,其中,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.2 两束同向传播平面波的叠加-复指数运算,若 E10 = E20, 记,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.2 两束
34、同向传播平面波的叠加-复指数运算,若 E10 = E20,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.3 两束同向传播平面波的叠加-相幅矢量运算,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.4 两束反向传播平面波的叠加 驻波,两束反向传播的原光波的波函数,假定,则,合成波上各点的振幅不是常数,而是与各点的位置坐标有关,满足,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.4 两束反向传播平面波的叠加 - 驻波,合成波上各
35、点的振幅不是常数,而是与各点的位置坐标有关,满足,振幅最大,为2E10,称为波腹。当满足,振幅为零,称为波节。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.4 两束反向传播平面波的叠加 驻波,其次,合成波上任意地点的振动位相都相同,即波的位相与Z没有关系。因此,不存在位相的传播问题,这就是把这种合成被叫做驻波的原因。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.5 不同频率平面波的叠加,拍频现象,考虑下述两个简谐波的叠加,假定,其中,Engineering Optics Dr
36、. F. Guo QTECH Spring 2016,8.4.5 不同频率平面波的叠加,合成波是一个频率为 而振幅受到调制的波,,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.5 相速度与群速度,由不同时间频率的原光波叠加而成的波,是一种复杂波。本小节将讨论这种复杂波的传播速度问题。为了突物复杂波的时间频率组成特点,假定各原光波都是沿同一方向传播的平面被,这样可以当作一维被问题处理。,其中复指数项代表载波,零位相点或其它“定位相值点”的传播速度就是载波的位相速度;余弦项代表了调制波。,Engineering Optics Dr. F.
37、Guo QTECH Spring 2016,8.4.5 相速度与群速度,群速度,相速度,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.5 相速度与群速度,群速度,当很小,,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.4.5 相速度与群速度,群折射率,在色散物质中,,一般讲,,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1光波的傅立叶分析,将复杂的光波分解为不同的单色光波,Engineering Optics Dr. F. Gu
38、o QTECH Spring 2016,8.1光波的傅立叶分析,1 非简谐周期波的傅立叶级数表示,傅里叶级数定理:一个空间周期为 2/k 的周期函数f (z)满足狄里赫利条件(一周期内只有有限个极值点和第类不连续点),则f (z)可以用下式的傅立叶级数表示,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1光波的傅立叶分析,1 非简谐周期波的傅立叶级数表示,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1光波的傅立叶分析,1 非简谐周期波的傅立叶级数表示,傅里叶级数用复数表示,Engine
39、ering Optics Dr. F. Guo QTECH Spring 2016,8.1光波的傅立叶分析,2 非周期波的傅立叶级数表示,可将非周期波的周期视为无穷大,利用傅立叶积分分析其频域特性,非周期波可以通过傅立叶积分分解为振幅随空间角频率连续变化的无限多个单色波的叠加。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1光波的傅立叶分析,2 非周期波的傅立叶级数表示,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1光波的傅立叶分析,3 实际光源发出的光波分析,实际光源发出的光波不是
40、无限延续的单色光波,而是一个个断续的波列或振幅衰减的光波,可以把这种波列看成发光原子一次辐射发出的波动的近似模型。,考察一固定时刻实际光源发出的一个波列。设波列在空间一段距离2L内呈简谐分布。,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1光波的傅立叶分析,3 实际光源发出的光波分析,Engineering Optics Dr. F. Guo QTECH Spring 2016,8.1光波的傅立叶分析,3 实际光源发出的光波分析,1 实际光源发出的光波(波列)不是一个单色光波,除了发出空间角频率为k0的光波以外,还包含有其它角频率取值的无数个分波。2 波列长度2L越长,则波列所包含的单色分波的波长范围或有效空间角频率范就越窄,实际光源发出的光波的申色性就越好,Engineering Optics Dr. F. Guo QTECH Spring 2016,