1、对傅立叶变换后图像空间域与频率域中垂直现象的研究,学生:杨诚,目录,现象与疑惑数学证明推广物理意义研究现状与意义待解决问题,现象与疑惑,现象与疑惑,输入图像为xy平面内任意一条水平线,幅度值为1,数学证明水平线,以前面提到的直线为输入图像,数学证明水平线,数学证明水平线,推广任意斜线,推广任意斜线,推广任意直线,当直线上的灰度值不是一常量时,如下图:,物理意义,物理意义,物理意义:与 方向垂直的直线上的点(x,y)频率相同,物理意义,输入图像取特定的fringe patterns时:,物理意义实例,以前面提到的fringe patterns:sin(x+y)为例。当把图像向u=v(或者说是x=
2、y)方向投影并以f(x,y)灰度值为纵坐标时,可以近似得到右下角的图,可以看出f(x,y)在u=v这个方向上有固定频率 物理意义就是:输入函数sin(x+y)的所有点在u=v(或x=y)方向的投影所得到的函数只有一个频率为 的正弦分量,也就是说所有的点在u=v方向上只能在 上有值。这样就会产生“叠加”的效果,我们就可以在u-v平面上看见两个亮点。,研究现状与意义,The Scientist and Engineers Guide to Digital Signal Processing By Steven W. Smith, Ph.D. chapter24-Linear Image Proce
3、ssing1.convolution to multiplication 2.Fourier Slice TheoremA two-dimensional fast Fourier transform method for measuring the inclination angle of parallel fringe patterns. S. De Nicola a, *, P. Ferraro . Optics & Laser Technology 30 (1998) 167173“The line joining these two peaks in the frequency sp
4、ace is perpendicular to the inclination angle of the interference fringe pattern”,研究现状与意义,Detecting regular patterns using frequency domain self-filteringD.G. Bailey, Dept. of Phys., Massey Univ., Palmerston North, New ZealandImage Processing, 1997. Proceedings., International Conference onDownload
5、from IEEE“The direction of the peak from the origin corresponds to the direction of the sinusoidal variation.”,研究现状与意义,Analysis of the Superposition of Periodic Layers and Their Moire Effects through the Algebraic Structure of Their Fourier SpectrumJournal of Mathematical Imaging and Vision 8, 99130
6、 (1998),待解决问题,很多文章中提到当图像为有规律的Regular Patterns (or Regular Image)时会出现这样的垂直现象,但是推广时很困难,因为无法硬性的用数学表达式把Regular Patterns规定下来。只有“Detecting irregularities in regular patterns”提到“Defining regular pattern”但是作者是以Bravais lattice(布拉维点阵)为具体例子,所以现在只能说“在灰度值呈现规律变化的图像里会出现垂直现象”前面提到的fringe patterns,还没能用式子证明出来,只能用物理意义进行理解,致谢,感谢大家听我讲了这么多废话!,