1、1初中数学教学中寓数学思想、方法融一炉全日制义务教育数学课程标准(实验稿)把数学思想、方法作为基础知识的重要组成部分,在新课标中明确提出来,这不仅是新课标体现义务教育性质的重要表现,也是对学生实施创新教育、培训创新思维的重要保证。 一、了解新课标要求,把握教学方法 所谓数学思想,就是数学知识的精髓和本质,它是课程中的深层知识,是对数学规律的理性认识。所谓数学方法,就是解决数学问题的根本程序,是数学思想的具体反映。数学思想是数学的灵魂。对数学方法起着指导作用,数学方法是数学的行为,是实施有关数学思想的技术手段。 1 明确基本要求,渗透“层次”教学。 新课标对初中数学中渗透的数学思想、方法划分为三
2、个层次,即“了解” 、 “理解”和“会应用” 。在教学中,要求学生“了解”数学思想有:数形结合的思想、分类的思想、化归的思想、类比的思想和函数的思想等。这里需要说明的是,有些数学思想在新课标中并没有明确提出来,比如:化归思想是渗透在学习新知识和运用新知识解决问题的过程中的,方程(组)的解法中,就贯穿了由“一般化”向“特殊化”转化的思想方法。教师在整个教学过程2中,不仅应该使学生能够领悟到这些数学思想的应用,而且要激发学生学习数学思想的好奇心和求知欲,通过独立思考,不断追求新知,发现、提出、分析并创造性地解决问题。在新课标中要求“了解”的方法有:分类法、类比法、反证法等。要求“理解”的或“会应用
3、”的方法有:待定系数法、消元法、降次法、配方法、换元法、图象法等。在教学中,要认真把握好“了解” 、 “理解” 、 “会应用”这三个层次。不能随意将“了解”的层次提高到“理解”的层次,把“理解”的层次提高到“会应用”的层次,不然的话,学生初次接触就会感到数学思想、方法抽象难懂,高深莫测,从而导致他们推动信心。如初中几何中明确提出“反证法”的教学思想,且揭示了运用“反证法”的一般步骤,但新课标只是把“反证法”定位在“了解”的层次上,我们在教学中,应牢牢地把握住这个“度” ,千万不能随意拔高、加深。否则,教学效果将是得不偿失。 2 从“方法”了解“思想” ,用“思想”指导“方法” 。 在初中数学中
4、,许多数学思想和方法是一致的,两者之间很难分割。它们既相辅相成,又相互蕴含。因此加强学生对数学方法的理解和应用,以达到对数学思想的了解,是使数学思想与方法得到交融的有效方法。比如化归思想,可以说是贯穿于整个初中阶段的数学,具体表现为从未知到已知的转化、一般到特殊的转化、局部与整体的转化,课本引入了许多数学方法,比如换元法,消元降次法、图象法、待定系数法、配方法等。在教学中,通过对具体数学方法的学习,使学生逐步领略内含于方法的数学思想;同时,数学思想的指导,又深化了数学方法的运用。3这样处置,使“方法”与“思想”珠联璧合,将创新思维和创新精神寓于教学之中。教学才能卓有成效。 二、遵循认识规律,把
5、握教学原则,实施创新教育 要达到新课标的基本要求,教学中应遵循以下几项原则: 1 渗透“方法” ,了解“思想” 。 由于初中学生数学知识比较贫乏,抽象思想能力也较为薄弱。因此只能将数学知识作为载体,把数学思想和方法的教学渗透到数学知识的教学中。教师要把握好渗透的契机,重视数学概念、公式、定理、法则的提出过程,知识的形成、发展过程,解决问题和规律的概括过程,使学生在这些过程中展开思维,从而发展他们的科学精神和创新意识,形成获取、发展新知识,运用新知识解决问题。忽视或压缩这些过程,一味灌输知识的结论,就必然失去渗透数学思想、方法的一次次良机。如初中代数有理数这一章,与原来部编教材相比,它少了一节“
6、有理数大小的比较” ,而它的要求则贯穿在整章之中。在数轴教学之后,就引出了“在数轴上表示的两个数,右边的数总比左边的数大” ,“正数都大于 0,负数都小于 0,正数大于一切负数” 。而两个负数比大小的全过程单独地放在绝对值教学之后解决。教师在教学中应把握住这个逐级渗透的原则,即使这一章节的重点突出,难点分散;又向学生渗透了形数结合的思想。学生易于接受。 2 训练“方法” ,理解“思想” 。 4数学思想的内容是相当丰富的,方法也有难有易。因此,必须分层次地进行渗透和教学。这就需要教师全面地熟悉初中三个年级的教材,钻研教材,按照不同的年龄特征、知识掌握的程度、认知能力、理解能力和可接受性能力由浅入
7、深,由易到难分层次地贯彻数学思想、方法的教学。如在教学同底数幂的除法时,引导学生先研究底数、指数为具体数的同底数幂的运算方法和运算结果,从而归纳出一般方法,在得出用a 表示底数,用 m、n 表示指数的一般法则以后。再要求学生应用一般法则来指导具体的运算。在整个教学中,教师分层次地渗透了归纳和演绎的数学方法,对学生养成良好的思维习惯起重要作用。 3 掌握“方法” ,运用“思想” 。 数学知识的学习要经过听讲、复习、做习题等才能掌握和巩固。数学思想、方法的形成同样有一个循序渐进的过程。只有经过反复训练才能使学生真正领会。比如,运用类比的数学方法,在新概念提出、新知识点的讲授过程中,可以使学生易于理解和掌握。在学习分式的定义和基本性质时,可与小学学过的分数的定义和基本性质类比,在学习二次函数有关性质时,可与一元二次方程的根与系数性质类比。通过多次重复性的演示,使学生真正理解、掌握类比的数学方法。 4 提炼“方法” ,完善“思想” 。 教学中要适时恰当地对数学方法给予提炼和概括,让学生有明确的印象。由于数学思想、方法分散在各个不同部分,而同一问题又可以用不同的数学思想、方法来解决。因此,教师的概括、分析是十分重要的。教师还要有意识地培养学生自我提炼、揣摩概括数学思想方法的能力,5这样才能把数学思想、方法的教学落在实处。