1、初三数学第二轮复习练习试卷(九)1、由一些大小相同的小正方形组成的几何体三视图如图所示,那么,组成这个几何体的小整个正方体有 ( )A6 块 B5 块 C4 块 D3 块2、如图 10,是一个 810 正方形格纸,ABC 中 A 点坐标为(2,1) 。(1)ABC 和ABC满足什么几何变换(直接写答案)?(2)作ABC关于 x 轴对称图形ABC;(3)ABC 和ABC满足什么几何变换?求A、B、C三点坐标(直接写答案) 。3、如图所示,在一笔直的公路 的同一旁有两个新开发区 ,已知 千米,MNAB,10直线 与公路 的夹角 ,新开发区 到公路 的距离 千AB30AO MN3C米(1)求新开发区
2、 到公路 的距离;(2)现要在 上某点 处向新开发区 修两条公路 ,使点 到新开发区NPB,PAB,的距离之和最短请你用尺规作图在图中找出点 的位置(不用证明,不写作法,AB,保留作图痕迹) ,并求出此时 的值A4、便民超市准备将 12 000 元现金全部用于从某鱼面长以出厂价购进甲、乙两种不同包装的孝感特产云梦鱼面,然后以零售价对外销售.已知这两种鱼面的出厂价(元/盒)与零售价(元/盒)如下表:出厂价(元/盒) 零售价(元/盒)ABCABCCNMO30主视图 左视图俯视图甲种鱼面(盒) 10 12乙种鱼面(盒) 16 20若超市购进甲种鱼面 200 盒,需付现金_元,还剩余现金_元,剩余的现
3、金可购买乙种鱼面_盒;设超市购进的甲种鱼面为 x(盒) ,全部售出甲、乙两种鱼面所获的销售利润为 y(元) ,求 y 与 x 之间的函数关系式;在的条件下,若甲、乙两种鱼面在保质期内的销售量都不超过 500 盒,求 x 的取值范围;并说明超市应怎样进货时获利最大?最大利润是多少?5、如图 16,以ABC 的边 AB、AC 为直角边向外作等腰直角ABE 和ACD,M 是 BC的中点,请你探究线段 DE 与 AM 之间的关系。说明:如果你经历反复探索,没有找到解决 问题的方法,请你把探索过程中的某种思路写出来(要求至少写3 步);在你经历说明的过 程之后,可以从下列、中 选取一个补充或更换已知条件,完成你的证明。注意:选取 完成 证明得 10 分;选取 完成证明得 5 分。画出将 ACM 绕某一点顺时针旋转 180后的图形;BAC = 90(如图 17)附加题:如图 18,若以ABC 的边 AB、AC 为直角边,向内作等腰直角ABE 和ACD,其它条件不变,试探究线段 DE 与 AM 之间的关系。 18 17BAM CDEB M CADEME 16DCBA