1.1.2四种命题1.1.3四种命题的相互关系.doc

上传人:sk****8 文档编号:3547571 上传时间:2019-06-04 格式:DOC 页数:3 大小:51KB
下载 相关 举报
1.1.2四种命题1.1.3四种命题的相互关系.doc_第1页
第1页 / 共3页
1.1.2四种命题1.1.3四种命题的相互关系.doc_第2页
第2页 / 共3页
1.1.2四种命题1.1.3四种命题的相互关系.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、英格教育文化有限公司 http:/www.e-l- 全新课标理念,优质课程资源学习方法报社 第 1 页 共 3 页1.1.2 四种命题 1.1.3 四种命题的相互关系(一)学习目标知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假 过程与方法:多举命题的例子,并写出四种命题,培养发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养抽象概括能力和思维能力情感、态度与价值观:通过举例,激发学习数学的兴趣和积极性,培养辨析能力以及分析问题和解决问题的能力(二)学习重点与难点重点:(1)会写四种命题并会判断

2、命题的真假;(2)四种命题之间的相互关系难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假(三)课堂过程探究过程:复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?2思考、分析问题 1:下列四个命题中,命题(1)与命题(2)(3)(4)的条件与结论之间分别有什么关系?(1)若 f(x)是正弦函数,则 f(x)是周期函数 (2)若 f(x)是周期函数,则 f(x)是正弦函数(3)若 f(x)不是正弦函数,则 f(x)不是周期函数(4)若 f(x)不是周期函数,则 f(x)不是正弦函数归纳总结问题

3、一通过学生分析、讨论可以得到正确结论紧接结合此例给出四个命题的概念,()和()这样的两个命题叫做互逆命题,()和()这样的两个命题叫做互否命题,()和()这样的两个命题叫做互为逆否命题.抽象概括定义 一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题其中一个命题叫做原命题,另一个命题叫做原命题的逆命题请举一些互逆命题的例子.定义 一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题其中一个命题叫做原命题,另一个命题叫做原命题的否命题请举一些互否命题的例子.定义

4、一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题请举一些互为逆否命题的例子.小结: (1) 交换原命题的条件和结论,所得的命题就是它的逆命题:(2) 同时否定原命题的条件和结论,所得的命题就是它的否命题;英格教育文化有限公司 http:/www.e-l- 全新课标理念,优质课程资源学习方法报社 第 2 页 共 3 页(3) 交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的.四种命题的形

5、式结合所举例子,思考:若原命题为“若 p,则 q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?学生通过思考、分析、比较,总结如下:原命题:若 p,则 q则:逆命题:若 q,则 p否命题:若p,则q(说明符号“”的含义:符号“”叫做否定符号“p”表示 p 的否定;即不是 p;非 p)逆否命题:若q,则p巩固练习写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:() 若一个三角形的两条边相等,则这个三角形的两个角相等;() 若一个整数的末位数字是,则这个整数能被整除;() 若 x2=1,则 x=1;() 若整数 a 是素数,则是 a 奇数.思考、分析结合以上练习思考:原命题的真

6、假与其他三种命题的真假有什么关系?原命题为真,它的逆命题不一定为真.原命题为真,它的否命题不一定为真.原命题为真,它的逆否命题一定为真.原命题为假时类似.结合以上练习完成下列表格:原 命 题 逆 命 题 否 命 题 逆 否 命 题真 真假 真假 真假 假由表格我们可以发现:原命题与逆否命题总是具有相同的真假性,逆命题与否命题也总是具有相同的真假性由此会引起我们的思考:一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?通过分析,会发现四种命题间的关系如下图所示.总结归纳若 p,则 q 若 q,则 p原命题 互 逆 逆命题英格教育文化有限公司 http:/www.e-l- 全新课标理

7、念,优质课程资源学习方法报社 第 3 页 共 3 页互 为否逆互否 为 互逆否互否否命题互 逆逆否命题若p,则q 若q,则p由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题例题分析例 4 证明:若 p2 q2 2,则 p q 2分析:如果直接证明这个命题比较困难,可考虑转化为对它的逆否命题的证明.将“若 p2 q2 2,则 p q 2”视为原命题,要证明原命题为真命题,可以考虑证明它的逆否命题“若 p + q 2,则 p2 + q2 2”为真命题,从而达到证明原命题为真命题的目的证明:若 p q 2,则p 2 q2 (p q) 2(p q) 2 (p q) 2 111所以 p2 q22这表明,原命题的逆否命题为真命题,从而原命题为真命题.练习巩固:证明:若 a2b 2ab,则 ab.学习反思()逆命题、否命题与逆否命题的概念;()两个命题互为逆否命题,他们有相同的真假性;()两个命题为互逆命题或互否命题,他们的真假性没有关系;()原命题与它的逆否命题等价;否命题与逆命题等价.作业 P8:习题 1组第,题.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 精品笔记

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。