1、第四章 流体润滑原理41第四章 流体润滑原理概 述用具有润滑性的一层膜把相对运动的两个表面分开,以防止这些固体表面的直接接触,并使滑动过程中表面间的摩擦阻力尽可能减小,表面的损伤尽量减低,这就是润滑。根据分隔固体表面的材料不同,润滑可分为以下三类:流体润滑:摩擦副两表面间被具有一定粘度的流体完全分开。将固体间的外摩擦转化为流体的内摩擦。边界润滑:摩擦界面上存在着一层具有良好润滑性的边界膜,但不是介质的膜。相对于干摩擦来说,边界润滑具有比较低的摩擦系数,能有效地减轻接触表面的磨损。固体润滑:广义来说,固体润滑也是一种边界润滑。就是用摩擦系数比较低的材料(固体润滑剂或固体润滑材料) ,在摩擦界面上
2、形成边界膜,以降低接触表面的磨损和摩擦系数。对于流体润滑的系统研究约在 19 世纪末逐渐展开。1883 年塔瓦(Tower)发现了轴承中的流体动压现象。彼得洛夫()研究了同心圆柱体的摩擦及润滑。随即雷诺(Reynold)应用了数学和流体力学的原理对流体动压现象进行了分析,发表了著名的雷诺方程。为流体动力润滑奠定了基础。后来一些科学家,在求解雷诺方程,以及将雷诺方程应用于工程实际中作出了贡献,并解决了很多雷诺方程假设以外的问题, 。对于线接触及点接触的滚动件,在重载条件下的润滑问题,考虑了接触零件表面间的弹性变形及润滑剂的粘-压效应。于 20 世纪中叶,格鲁宾()提出了著名的弹性流体动力润滑的计
3、算公式。以后的道松(Dowson)郑绪云(Cheng)温诗铸等的进一步发展,使弹性流体动力润滑理论日趋成熟。随着科学技术的发展,流体润滑中的紊流、惯性、热效应等以及非牛顿流体润滑等问题也展开了研究。流体润滑定义:在适当条件下,摩擦副的摩擦表面由一层具有一定厚度的粘性流体完全分开,由流体的压力来平衡外载荷。流体层中的分子大部分不受金属表面离子、电子场的作用而可以自由地移动。这种状态称为流体润滑。流第四章 流体润滑原理42体润滑的摩擦性质完全取决于流体的粘性,而与两个摩擦表面的材料性质无关。流体润滑的优点:流体润滑具有极低的摩擦阻力,摩擦系数在0.0010.008 或更低(气体润滑) ,并能有效地
4、降低磨损。流体润滑的分类:根据液体压力形成的方式可分为流体静压润滑和流体动压润滑。流体静压润滑是从外部供给具有一定压力的流体来平衡外载荷。流体动压润滑是由摩擦表面几何形状和相对运动,借助粘性流体的动力学产生动态压力,用此润滑膜的动压来平衡外载荷。这里着重介绍流体动压润滑原理及流体润滑基本方程。根据摩擦表面的几何形状、尺寸、间隙、流体粘度、相对运动速度和载荷等条件,运用(粘性)流体力学的方法,分析流体润滑膜的压力分布、厚度、流量、摩擦力、发热量和温升等。以便正确设计和选择参数,确保形成流体润滑。4.1 流体粘度在流体润滑理论中,流体(润滑油)的粘度是表征润滑油性质的重要指标。流体的粘性是流体内部
5、对抗相对运动或变形的一种物理性质,也就是流体分子彼此流过时所产生的一种内摩擦阻力。粘性的大小以粘度表示。4.1.1 动力粘度(绝对粘度)可将流动的液体看作是无限多的极薄的液层组成,液体的内摩擦就是各液层之间相对滑动引起的剪切应力 , 的方向在运动较快一层与运动方向相反,在较慢一层则与运动方向相同。其示意图见图 4.1。剪应力 (流体作切向运动的单位面积阻力)与速度梯度成正比。(牛顿粘性公式)duy式中: 为粘度系数(动力粘度或绝对粘度) 。其物理意义为:两个面积各为 1m2 的平行液面,相距1m,以 1m/s 的速度作相对运动,如此时产生的阻力为 1N(牛顿)时,动力粘y duyuyx 图 4
6、.1 液体内摩擦示意图第四章 流体润滑原理43度 为 1Pas。 smkgskgmNsPadyu 22/动力粘度的单位为 Pas(帕斯卡秒) ;量纲为 ML-1T-1(质量长度 -1时间-1) 。实用时,采用 P(泊)为动力粘度的单位。1P=1dyns/cm 2=0.1Pas1P=0.1Pas=100cP 1cP=10-2P=103 Pas; cP 厘泊水的 110 3 Pas; 空气的 0.0210 3 Pas; 润滑油的240010 3 Pas。在英制中,动力粘度称为雷恩(Reyn) 。 1Reyn69000P4.1.2 运动粘度将同一温度下某液体的动力粘度和该液体的密度之比定义为运动粘度
7、 。 式中: 流体密度,单位 g/cm3;(一般润滑油的密度 0.850.95g/cm 3) 运动粘度,单位 m2/s;实用时因为 的单位太大,用沲(斯托克斯)St 作为运动粘度的单位,令1 St1cm 2/s1St=10-4m2/s=100cSt 1cSt=10-6 m2/smm 2/s cSt(厘沲)4.1.3 影响粘度的因素温度的影响流体的粘度受温度影响明显。温度升高,流体膨胀,分子间的距离增大,吸引力减小,粘度降低。通常 50以下,粘度随温度变化十分显著,特别是当溶解于油中的烃类的析出,和极性分子的相互吸引,使粘度明显增大,甚至失去流动性。而 50以上粘度变化缓慢。如图 4.2 所示。
8、第四章 流体润滑原理44据实验结果归纳出一个经验公式: tfdt1式中: 粘 -温系数;t 温度2ctbaf为温度 t 的多项式。如果只取第一项,则上式可化为:称雷诺粘度方程式中:k 常数;t 测试温度() ;t0 室温()此式比较简单,但不够精确。适用于温度变化较小的情况下。如果取前两项或三项,则得斯洛特(Slotte)方程msat或 福格尔(Vogel)方程。btke用这些方程计算繁复,但比较精确。通常,人们用相对值来表示粘度随温度变化的程度,如粘度比,粘度-温度系数,及粘度指数等。a.粘度比同一润滑油在低温下的运动粘度与高温下的运动粘度之比值,称为该油的粘度比。通常用 来表示粘度比。此值
9、越小(接近 1) ,表示粘温性能越好。501b.粘度-温度系数同一润滑油在 0和 100时的运动粘度之差与该油在 50时的运动粘度之比。粘-温系数 。该系数的值越小,表示润滑油的粘温性能越好,即015粘度随温度变化越小。此系数是用于评定温度使用范围较大的高粘度润滑油。c.粘度指数粘度指数是衡量润滑油粘度随温度变化程度的指标.粘度指数高,表示其粘粘度cP50温度图 4.2 典型的粘温曲线0tek第四章 流体润滑原理45度随温度的变化小,即粘温曲线平缓,粘温性能好。粘度指数的大小分成四段:低粘度指数 110。根据我国石油产品国家标准 GBT199588 规定,粘度指数 VI 值按以下方法计算:当粘
10、度指数100 时,10HLUVI 10DULVI式中: L 与试样 100时的运动粘度相同,粘度指数为 0 的石油产品在 40时的运动粘度, mm2/s;H 与试样 100时的运动粘度相同,粘度指数为 100 的石油产品在40时的运动粘度, mm2/s;U 试样 40时的运动粘度 mm2/s;D 为 LH, mm 2/s。润滑油的粘温工作已经作过很多,L,H 可以在已有的列表中查出,或经过计算得到。当粘度指数100 时, YUHNlogU 试样 40时的运动粘度,mm 2/s;Y 试样 100时的运动粘度,mm 2/s;H 与试样 100时的运动粘度相同,粘度指数为 100 的石油产品在 40
11、时的运动粘度,mm 2/s。1075.0logNVI反 10040 VI=0VI=100试样LUH运动粘度第四章 流体润滑原理46压力的影响流体受压时,分子间距离缩短,吸引力增加,粘度就增大。通常在压力低于 0.5107Pa 时,油的粘度变化可以忽略不计,而当压力超过2107Pa 时才需要考虑其影响。其粘 -压系数如图 4.3 所示,为一指数函数。 与 的关dp系是一条直线,斜率接近于(略小于)1。当 p( 45) 107Pa 时,油的粘度约为大气压时的 2 倍。这种特性对弹性流体动力润滑有十分重要的作用。粘-压曲线的数学表达式为: 0ppe式中:p 油的压力p 压力为 p 时的动力粘度;0
12、大气压下的动力粘度; 粘度的压力系数。但此式在压力(p)很高时,计算得到的 p偏大。矿物油和合成润滑油的粘度-压力系数在 (530)10 -9m2/N。斜率1粘度压力 p图 4.3 典型的粘-压曲线d第四章 流体润滑原理474.2 流体润滑的基本方程4.2.1 雷诺方程(Reynolds)流体动压润滑理论的基本方程之一润滑油压力分布的微分方程即雷诺方程。雷诺方程可以从粘性流体力学的基本方程导出,也可以从纳维-斯托克斯方程导出。在推导之前必须先作以下假定,将问题简化:简化假定润滑剂的体积力(重力)与粘性力相比可忽略不计。即流体不受附加力的作用。润滑剂运动时的惯性力与粘性力相比,可忽略不计。润滑膜
13、的厚度很小(与摩擦表面的轮廓尺寸相比) ,可认为润滑膜的压力沿膜厚方向是不变的。即 。0py润滑剂在界面上无滑动。即润滑剂的速度与摩擦表面的速度一样。摩擦表面的曲率与润滑膜的厚度相比很大,可将摩擦表面展成平面。可不计表面运动速度方向的改变,即可将移动速度代替旋转速度。以上几点假定一般都是符合实际的。以下几点假定不一定符合实际(特别是在高速、重载条件下) ,计算时会有误差。只是为了把复杂的问题进行简化,便于求解而提出的假定。润滑剂为牛顿流体,即粘度符合牛顿粘性公式 。duy润滑剂在间隙中的流动为层流(非紊流) ,且不计其流动中的惯性效应。组成间隙的两个固体表面是刚性的(实际上是弹性或塑性的) 。
14、润滑剂是不可压缩的(对液体而言是正确的,但气体就是可压缩的了) 。润滑剂的粘度在间隙中保持不变。即不计温度与压力对粘度的影响(其实是有影响的) 。与 、 相比,其它方向的速度梯度都可略去不计。 (u、w 分别为uywx、z 方向的速度分量) 。 XY Z第四章 流体润滑原理48影响油膜压力分布的条件 油楔效应压力与速度的分布:润滑剂(油)在两无限宽的平板之间形成收敛楔形的间隙中流动时会产生油膜压力。图 4.4 所示为楔形间隙中油压分布情况。 (a)中所示 D 为固定板,C 板以速度 U 沿 x 方向作切向运动(由大间隙 h1 向小间隙 h0 处流动) 。假定润滑油在界面上无相对滑动(假定 4)
15、 ,则粘附于 D 表面上的润滑油的速度为零。而粘附于 C 表面上的速度则为 U。使间隙中的油膜受连续的剪切作用。即在任意 y 值处的油的速 度为:当 y=h 时, uc=0y=0 时, uc =U其速度分布如(b)所示。这种流动称为剪切流动。u c 为剪切流动的速度由于两表面的间隙是收敛的楔形,且流体是不可压缩的(假定 9) 。故通过间隙的流量是相等的(如仅有剪切流动,必然会导致间隙各截面处的流量不相等。而要保持连续流动,流量必须保持相等才行),因此在间隙中会建立起流动压力,并引起压力流动。其流动速度与压力间的相互关系为: 式中:u p 由于压力引起的速度; 润滑油粘度;沿 x 方向的压力梯度
16、;dchu212dyhx(a)h1BUCh0yDuc 分布图(b)yucucDxxx=Bx=0压力分布图(c)为正dpx为负dppmaxup 分布图(d)upupupuphup=0 Dx= xuc+upx=Bucuc+upx=0 D速度分布图u=uc+up(e)图 2-4 楔形间隙中油压分布示意图Nh第四章 流体润滑原理49设 为正值,则液体由高压流向低压处为负值。dpx压力分布如图(c )所示,是抛物线型。因为在板的两端(x=0 及 x=B 处) ,P=0(大气压力) ;则中间一定有某一位置 ( )处,其 0,p=p max。xdpxup(由压力引起的速度)分布如图(d)所示,为抛物线形状(
17、y 的二次方程) ,当 y=0 和 y=h 时,u p0。因为流体由高压向低压流动, 处压力最大,故由压力引起的速度应向两边流动,所以,p max 处的 up0。流动是由剪切和压力两个原因引起的,故间隙中流体的速度为此两种速度之和。如图(e )所示。u=uc+up 即:流量在各截面上相等:假定平板为无限宽,可不考虑侧向流动(侧泄)的影响,即 z 方向没有流动,则单位时间内在 x 方向每单位油膜厚度流过的流量为: 01hxqudy把 u 的表达式代入并积分,得:32xUpx设边界条件:在油膜中某处( ) ,设其间隙为 ,因为该处的h0。故通过该截面处的流量为:dpx 2xq由于要保持连续流动,即
18、通过任何截面的流量都应相等,则 qx=即:3212Uhdphx将此式整理后可得:(R-1a)36dphx此式称一维雷诺方程 。12hydpuUhyx第四章 流体润滑原理410此方程的含义是:油膜必须呈收敛的楔形,即 h 随在 x 方向的位置而变(直线方程) ,如果 h 为常数,那么, 0。则不可能产生流体动压力。同时dpx也可以看出,油膜要建立起足够的流体压力以支承外载荷,还必须要有足够的速度和油的粘度。如速度过低,或 过小则油膜压力太小,不易形成流体润滑状态。如表面 C 和 D 分别以 U1 和 U2 运动时, (设 x 坐标上任何一点的油膜厚度不随时间而变化) 。则雷诺方程可写成如下更普遍的形式:(R-1b) 挤压效应如图 4.5 所示, ;两平行平板 C 和 D 作法向运动(没有剪切流动) ,其速度分别为 V1 和 V2。这种情况也可将其分解为两个分量(如图 a):平板 C 以速度为 V1V 2 向平板 D 接近;两平板均以 V2 的速度运动。分量不产生油压。而分量因互相接近,h 在不断变小,这样将导致产生压力,使润滑油向两边缘流出,这就使油膜建立起一定的承载能力。如假设平板宽度为无限大,则可不计测泄。xV1V 2upxohBhC V1V2DV1V 2固定 V2V2 (a)(b)pmaxp(c)图 4.5 作相向运动的两个板3216hdxp