1、摘 要高速加工中心作为新时代数控机床的代表。已在机床领域广泛使用。其高速、高效、高精等特点,赢得了市场的青睐,这些年来,国产加工中心技术发展得很快,国内许多机床厂家都有了具有国际水平或接近国际水平的自主开发的加工中心机床。为了提高数控机床的机械加工精度和效率,现大多数控机床和加工中心都配备刀库 ,以便一次装卡就可完成多种工序的加工。常用刀库有链式和盘式两种,刀库容量有12、16、20 、 32、40 等等。本文首先对 16 刀刀库总体设计方案进行阐述,阐述其各部件的工作原理,然后就刀库的结构设计对各个部分进行计算与设计。关键词:加工中心,刀库,液压。ABSTRACTHigh speed mac
2、hining center as a representative of the new age of nc machine tools. Has been widely used in the field of machine tool. Its characteristics such as high speed, high efficiency, high precision, won the favor of the market, over the years, the domestic machining center technology developing quickly,
3、many domestic machine tool manufacturers have international level or close to the international level of independent development of machining center machine tool.In order to improve the machining precision and efficiency of nc machine tools, now most of the numerical control machine tools and machin
4、ing center are equipped with knife library, so that a card to the variety of working procedure of processing can be completed. Libraries have the chain and disc two kinds, dao database is 12, 16, 20, 32, 40, and so on.This article first elaborates the overall design of 16 knife knife library, the pa
5、per explains the working principle of the parts, and then the structure of the tool storage design calculation and design for each part.Key words: machining centers, knife library, hydraulic pressure.目 录摘 要 .1ABSTRACT .2目 录 .3第一章 绪 论 .51.1 前言 .51.2 加工中心发展历史 .51.3 加工中心的结构组成 .111.4 加工中心的分类 .121.5 本论文研
6、究的目的和意义 .13第二章 加工中心 刀库 .142.1 刀库的分类 .142.1.1 斗笠式刀库 .142.1.2 圆盘式刀库 .142.1.3 链条式刀库 .152.2 刀库的类型 .152.2.1 鼓(盘) 式刀库 .152.2.2 链式刀库 .162.2.3 格子盒式刀库 .162.3 刀库的结构 .162.3.1 圆盘式刀库的结构 .162.3.2 链式库的结构 .162.4 刀库的容量 .17第三章 总体方案的设计 .183.1 运动方案的设计 .183.1.1 运动数目的确定 .183.1.2 运动方案的确定 .183.2 功能部件的设计方案 .193.2.1 主传动系统 .1
7、93.2.2 进给伺服系统 .203.2.3 自动换刀系统 .213.3 总体布局 .223.4 主要技术参数 .22第四章 刀库的设计 .244.1 刀库主要参数的确定 .244.2 刀盘部分的设计 .24第五章 轴的设计 .25第六章 导轨的选型及计算 .296.1 初选导轨型号及估算导轨长度 .296.2 计算滚动导轨副的距离额定寿命 .306.3 导轨材料与热处理 .326.4 导轨的技术要求 .336.4.1 表面粗糙度 .336.4.2 几何精度 .346.5 导轨设计和使用注意事项 .34第七章 重要零部件的设计 .367.1 联轴器 .367.1.1 联轴器的选择 .367.1
8、.2 联轴器校核 .367.2 回零减速撞块尺寸的计算 .367.3 刀具(刀座)识别装置 .377.4 滚动轴承的选择和计算 .38结 论 .40参考文献 .41致 谢 .42第一章 绪 论1.1 前言随着科学技术的发展,世界先进制造技术的兴起和成熟,而对作为现代制造业非常重要的加工中心提出了更高的要求,超高速切削、超精密加工等技术的应用,对加工中心的组成部分提出了更高的性能指标。 加工中心是一种综合加工能力较强的数控加工设备,工件一次装夹后能完成较多的加工工序,加工精度较高,就中等加工难度的批量工件,其效率是普通设备的 510倍,特别是它能完成许多普通设备不能一次完成的加工。加工中心对形状
9、较复杂,精度要求高的单件加工或中小批量多品种生产更为合适,特别是对于必需采用工装和专用设备来保证产品质量和效率的工件,采用加工中心加工,可以省去工装和专机。这为新产品的研制和改型换代节省大量的时间和费用,从而使企业具有较强的竞争力。然而目前国内外加工中心的生产厂家设计生产的加工中心大多是大、中型零件的加工。加工中心有多种形式,常见的有盘式、链式两种刀库。盘式结构中,刀具可以沿着主轴的轴向、径向、斜向按放,刀具轴向的安装的结构最为紧密,但为了换到时与主轴同向,有的刀具库中刀具需要在换刀位作 90 度翻转。在刀库容量较大时,为在存放方便的同时保持结构紧凑,可采用弹仓式结构,目前大量的刀库安装在机车
10、立柱的顶面或侧面,在刀库较大时,也有安装在专门的地基上,以隔离刀库转动造成的震动。 链式刀库存放刀具容量比盘式大,结构比较灵活,可以采用加长链带方式加大刀库容量,也可以采用链带折叠回绕的方式提高空间利用率,在需要刀具容量较大时,还可以采用多链带结构。1.2 加工中心发展历史 20 世纪中期,随着电子技术的发展,自动信息处理、数据处理以及电子计算机的出现,给自动化技术带来了新的概念,用数字化信号对机床运动及其加工过程进行控制,推动了机床自动化的发展。 采用数字技术进行机械加工,最早是在 40 年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司(ParsonsCorporation) 实现
11、的。他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到0.0381mm(0.0015in),达到了当时的最高水平。 1952 年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。这台数控机床被大家称为世界上第一台数控机床。 这台机床是一台试验性机床,到了 1954 年 11 月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司(Bendix-Cooperation)正式生产出来。 在此以后,从 1960 年开始,其他一些工业国家,如德国、日本都陆
12、续开发、生产及使用了数控机床。 数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。 然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此除了在军事部门使用外,在其他行业没有得到推广使用。 到了 1960 年以后,点位控制的数控机床得到了迅速的发展。因为点位控制的数控系统比起轮廓控制的数控系统要简单得多。因此,数控铣床、冲床、坐标镗床大量发展,据统计资料表明,到 1966 年实际使用的约 6000 台数控机床中,85%是点位控制的机床。 数控机床的发展中,值得一提的是加工中心。这是一种具有自动换刀装置的数控机床,它能实现
13、工件一次装卡而进行多工序的加工。这种产品最初是在 1959 年 3 月,由美国卡耐;特雷克公司(Keaney1848 年,美国又出现回轮车床;1873 年,美国的斯潘塞制成一台单轴自动车床,不久他又制成三轴自动车床;20 世纪初出现了由单独电机驱动的带有齿轮变速箱的车床。第一次世界大战后,由于军火、汽车和其他机械工业的需要,各种高效自动车床和专门化车床迅速发展。为了提高小批量工件的生产率,40 年代末,带液压仿形装置的车床得到推广,与此同时,多刀车床也得到发展。50 年代中,发展了带穿孔卡、插销板和拨码盘等的程序控制车床。数控技术于 60 年代开始用于车床,70 年代后得到迅速发展。 车床依用
14、途和功能区分为多种类型。 普通车床的加工对象广,主轴转速和进给量的调整范围大,能加工工件的内外表面、端面和内外螺纹。这种车床主要由工人手工操作,生产效率低,适用于单件、小批生产和修配车间。 转塔车床和回转车床具有能装多把刀具的转塔刀架或回轮刀架,能在工件的一次装夹中由工人依次使用不同刀具完成多种工序,适用于成批生产。 自动车床能按一定程序自动完成中小型工件的多工序加工,能自动上下料,重复加工一批同样的工件,适用于大批、大量生产。多刀半自动车床有单轴、多轴、卧式和立式之分。单轴卧式的布局形式与普通车床相似,但两组刀架分别装在主轴的前后或上下,用于加工盘、环和轴类工件,其生产率比普通车床提高 35
15、 倍。 仿形车床能仿照样板或样件的形状尺寸,自动完成工件的加工循环,适用于形状较复杂的工件的小批和成批生产,生产率比普通车床高 1015 倍。有多刀架、多轴、卡盘式、立式等类型立式车床的主轴垂直于水平面,工件装夹在水平的回转工作台上,刀架在横粱或立柱上移动。适用于加工较大、较重、难于在普通车床上安装的工件,一般分为单柱和双柱两大类。 铲齿车床在车削的同时,刀架周期地作径向往复运动,用于铲车铣刀、滚刀等的成形齿面。通常带有铲磨附件,由单独电动机驱动的小砂轮铲磨齿面。 专门车床是用于加工某类工件的特定表面的车床,如曲轴车床、凸轮轴车床、车轮车床、车轴车床、轧辊车床和钢锭车床等。联合车床主要用于车削
16、加工,但附加一些特殊部件和附件后,还可进行镗、铣、钻、插、磨等加工,具有“一机多能”的特点,适用于工程车、船舶或移动修理站看机床的水平主要看金属切削机床,其他机床技术和复杂性不高,就是近几年很流行的电加工机床,也只是方法的改变,没什么复杂性和科技含量。我国的数控磨床水平不错,每年都有大量出口,因为它简单,基本属于劳动密集型。 金属加工主要是去除材料,得到想得到的金属形状。去除材料,主要靠车和铣,车床发展为数控车床,铣床发展为加工中心。高精度多轴机床,可以让复杂零件在精度和形状上一次到位,例如,飞机上的一个复杂零件,以前由很多种工人:车工、铣工、磨床工、画线工、热处理工用好几个月干,其中还有报废
17、的,最新的复合数控机床几天甚至几个小时就全干好了,而且精度比你设计的还高。零件精度高就意味着寿命长,可靠性好。由普通发展到数控,一个人顶原来的十个,在精度上,更是没法说,适应性上,零件变了,换个程序就行。把人的因素也降为最低,以前在工厂,谁要时会车涡轮、蜗杆,没个 10 年 8 年的不行,要是谁掌握了,那牛得很。现在用数控设备,只要你会编程,把参数输进去就可以了,很简单,刚毕业的技校学生都会,而且批量的产品质量也有保证。自美国在 50 年代末搞出世界一台数控车床后,机床制造业就进入了数控时代,中国在六十年代也搞出了第一代数控机床,但后来中国进入了什么年代,大家都知道。等 80 年代我们再去看世
18、界的数控机床水平,差距就是 20 年了,其实奋起直追还有希望,但国营工厂不思进取,到了 90 年代,我们再去看世界水平,已有 30 年的差距了。中国改革开放前走的是苏联的路子,什么叫苏联的路子,举个例子来讲:比如,生产一根轴,苏联的方式是建一个专用生产线,用多台专用机床,好处是批量很容易上去,但一旦这根轴的参数发生了变化,这条线就报废了,生产人员也就没事做了。在 1960-1980 年代,国营工厂一个产品生产几十年不变样。到了 1980 年代后,当时搞商品经济,这些厂不能迅速适应市场,经营就困难了,到了 90 年代就大量破产,大量职工下岗。现代的生产也有大批量生产,但主要是单件小批量,不管是那
19、种,只要你的设备是数控的,适应起来就快。专业机床的路子已经到头了, ;西方走的路和前苏联不一样,当年的“东芝”事件,就是日本东芝卖给苏联了几台五轴联动的数控铣床,让苏联在潜艇的推进螺旋桨上的制造,上了一个档次,让美国的声纳听不到潜艇声音了,所以美国要惩处东芝公司。由此也可见,前苏联的机床制造业也落后了,他们落后,我们就更不用说了。虽然,美国搞出了世界第一台数控机床,但数控机床的发展,还是要数德国。德国本来在机械方面就是世界第一,数控机床无非就是搞机电一体化,机械方面德国已没问题,剩下的就是电子系统方面,德国的电子系统工业本来就强大,所以在上世纪六、七十年代,德国就执机床界的牛耳了。但日本人的强
20、项就是仿造,从上世纪 70 年代起,日本大量从德国引进技术,消化后大量仿造,经过努力,日本在 90 年代起,就超越了德国,成为世界第一大数控机床生产国,直到现在还是。他们在机床制造水平上,有一些也走在了世界前面,如在机床复合(一机多种功能)化方面,是世界第一。数控机床的核心就在数控系统方面,日本目前在系统方面也排世界第一,主要是它的发拿科公司。第一代的系统用步进电机,我们现在也能造,第二代用交流伺服电机。现在的数控系统的核心就是交流伺服电机和系统内的逻辑控制软件,交流伺服电机我们国家目前还没有谁能制造,这是一个光学、机械、电子的综合体。逻辑控制软件就是控制机床的各轴运动,而这些轴是用伺服电机驱
21、动的,一般的系统能同时控制 3 轴,高级系统能控制五轴,能控 5 轴的,五轴以上也没问题。我们国家也由有 5 轴系统,但“做秀”的成份多,还没实用化。我们的工厂用的五轴和五轴以上机床,100%进口。机床是一个国家制造业水平高低的象征,其核心就是数控系统。我们目前不要说系统,就是国内造的质量稍微好一点的数控机床,所用的高精度滚珠丝杠,轴承都是进口的,主要是买日本的,我们自产的滚珠丝杠、轴承在精度、寿命方面都有问题。目前国内的各大机床厂,数控系统 100%外购,各厂家一般都买日本发那科、三菱的系统,占 80%以上,也有德国西门子的系统,但比较少。德国西门子系统为什么用的少呢?早期,德国系统不太能适
22、合我们的电网,我们的电网稳定性不够,西门子系统的电子伺服模块容易烧坏。日本就不同了,他们的系统就烧不坏。近来西门子系统改进了不少,价格方面还是略高。德国人很不重视中国,所以他们的系统汉语化最近才有,不像日本,老早就有汉语化版的。就国产高级数控机床而言,其利润的主体是被外国人拿走了,中国只是挣了一个辛苦钱。美国为什么没有能成为数控机床制造大国呢?这个和他们当时制定产业政策的人有关,再加上当时美国的劳动力贵,买比制造划算。机床属于投资大,见效慢,回报率底的产业,而且需要技术积累。不太附和美国情况。但后来美国发现,机床属于战略物资,没有它,飞机、大炮、坦克、军舰的制造都有问题,所以他们重新制定政策,
23、扶植了一些机床厂,规定了一些单位只能买国产设备,就是贵也得买,这就为美国保留了一些数控机床行业。美国机床在世界上没有什么竞争力。欧洲的机床,除德国外,瑞士的也很好,要说超高精密机床,瑞士的相当好,但价格也是天价。一般用户用不起。意大利、英国、法国属于二流,中国很少买他们的机床。西班牙为了让中国进口他们的机床,不惜贷款给中国,但买的人也很少。韩国、台湾的数控机床制造能力比大陆地区略强,不过水平差不多。他们也是在上世纪 90 年代引进日本技术发展的。韩国应该好一点,它有自己制造的、已经商业化了的数控系统,但进口到中国的机床,应我们的要求,也换成了日本系统。我们对他们的系统信不过。韩国数控机床主要有两家:大宇和现代。大宇目前在我国设有合资企业。台湾机床和我们大体一样,自己造机械部分,系统采购日本的。但他们的机床质量差,寿命短,目前在大陆影响很坏。其实他们比我们国产的要好一点。但我们自己的差,我们还能容忍,台湾的机床是用美金买来的,用的不好,那火就大了。台湾最主要的几家机床厂已打算把工厂迁往大陆,大部分都在上海。这些厂目前在国内的竞争中,也打着“国产”的旗号。近来随着中国的经济发展,也引起了世界一些主要机床厂商的注意,2000 年,日本最大的机床制造商“马扎克”在中国银川设立了一家数控机床合资厂,据说制造水