食品保藏原理热力致死时间.ppt

上传人:坚持 文档编号:4139161 上传时间:2019-09-29 格式:PPT 页数:69 大小:1.14MB
下载 相关 举报
食品保藏原理热力致死时间.ppt_第1页
第1页 / 共69页
食品保藏原理热力致死时间.ppt_第2页
第2页 / 共69页
食品保藏原理热力致死时间.ppt_第3页
第3页 / 共69页
食品保藏原理热力致死时间.ppt_第4页
第4页 / 共69页
食品保藏原理热力致死时间.ppt_第5页
第5页 / 共69页
点击查看更多>>
资源描述

1、食品保藏原理 第四章 食品热处理和杀菌 食品加工与保藏中的热处理 食品热处理反应的基本规律 食品热处理条件的选择与确定 食品的非热杀菌 内容提要 第一节 食品加工与保藏中的热处理 热处理( Thermal processing) 是采用加热的方式来改善食品品质、延长食 品贮藏期的食品处理方法(技术)。 是食品加工与保藏中最重要的处理方法之一 一、 食品热处理的作用 正面作用 杀死微生物,主要是致病菌和腐败菌 等有害的微生物; 钝化酶,主要是过氧化物酶、抗坏血 酸酶; 一、 食品热处理的作用 正面作用 改善食品的品质与特性,如产生特别的 色泽、风味和组织状态等; 提高食品中营养成分的可利用率、可

2、消 化性等; 破坏食品中不需要或有害的成分,如大 豆中的胰蛋白酶抑制剂 负面作用 食品中的营养成分,特别是热敏性成分 有一定损失 食品的品质和特性产生不良的变化; 消耗的能量较大。 二、热处理的类型和特点 1. 工业烹饪( Industrial cooking) 煮、焖(炖)、烘(焙)、炸(煎)、烤 2. 热烫( Blanching or Scalding) 3. 热挤压( Hot extrusion) 4. 热杀菌 巴氏杀菌( Pasteurisation) 商业杀菌( Sterilization) 二、热处理的类型和特点 工业烹饪( Industrial cooking) 工业烹饪一般作为

3、食品加工的一种前处 理过程,通常是为了提高食品食用时的感官 质量而采取的一种处理手段。 常见形式有:煮、焖 (炖 )、 炸 (煎 ) 、烘 (焙)、烤 二、热处理的类型和特点 热烫( Blanching or Scalding) 热烫,又称烫漂、杀青、预煮,是食 品加工与保藏中主要用以破坏食品组织中 导致质量降低 酶 的活性的一种热处理形式 热烫处理主要应用于蔬菜和某些水果, 通常是蔬菜和水果冷冻、干燥或罐藏前的 一种前处理工序。 二、热处理的类型和特点 热挤压( Hot extrusion) 挤压是将食品物料放入挤压机中,物 料在螺杆的挤压下被压缩并形成熔融状态, 然后在出料端通过模具出口被

4、挤出的过程。 热挤压则是指食品物料在挤压的过程中 还被加热。热挤压也被称为挤压蒸煮( Extrusion cooking)。 挤压是结合了混合、蒸煮、揉搓、剪 切、成型等几种单元操作的过程。 二、热处理的类型和特点 热杀菌 杀菌是以杀灭微生物为主要目的的热 处理形式,根据要杀灭微生物的种类的不 同可分为: 巴氏杀菌( Pasteurisation) 商业杀菌( Sterilization) 巴氏杀菌( Pasteurisation) 巴氏杀菌是一种较温和的热杀菌形 式 ,巴氏杀菌的处理温度通常在 100 以 下 ,达到同样的巴氏杀菌效果,可以有不 同的温度时间组合。 巴氏杀菌( Pasteur

5、isation) 巴氏杀菌的目的及产品的贮藏期主要 取决于杀菌条件、食品成分和包装情况 . 对低酸性食品 ,巴氏杀菌可以杀灭 致病 菌 ;对于酸性食品 ,巴氏杀菌不仅可杀灭致 病菌,还可以杀灭 腐败菌 和 酶 。 酸性食品:指天然 pH4.6 的食品; 低酸性食品:指最终平衡 PH4.6, w0.85的任何食品。 典型巴氏杀菌的条件 食品 作用条件 pH 4.6 果汁 65 , 30min ; 77 , 1min 啤酒 88 , 15s; 65-68 , 20min; 72-75 , 1-4min pH 4.6 牛乳 63 , 30min; 71.5 , 15s 液态蛋 64.4 , 2.5m

6、in; 60 , 3.5min 冰淇凌 65 , 30min; 71 , 10min; 80 , 15s 商业杀菌( Sterilization) 又简称为杀菌 ,是一种较强烈的热处理 形式 ,通常是将食品加热到较高的温度并维 持一定的时间以达到杀死所有致病菌、腐 败菌和绝大部分微生物 ,一般也能钝化酶, 使杀菌后的食品达到较长的贮期。但它同 样对食品营养成分和品质的破坏也较大 商业杀菌( Sterilization) 杀菌后食品的无菌程度通常也并非达到 完全无菌,只是杀菌后食品中不含致病菌, 残存的处于休眠状态的非致病菌在正常的食 品贮藏条件下不能生长繁殖,这种无菌程度 被称为 “商业无菌

7、”,即它是一种部分无菌 Partically sterile 商业杀菌( Sterilization) 商业杀菌是以杀死食品中的致病和使食 品腐败变质的微生物为准,以使杀菌后的食 品符合安全卫生要求、具有一定的贮藏期。 很明显,这种效果只有在密封的容器内 才能取得,将食品先密封于容器内再进行杀 菌处理即是一般罐头的加工形式,而将经高 温短时或超高温瞬时杀菌后的食品在无菌的 条件下进行包装,则是无菌包装。 热杀菌的主要类型 湿热杀菌 热杀菌中最主要的方式之一。它是以蒸气、热 水为热介质,或直接用蒸汽喷射式加热的杀菌 法。 食品湿热杀菌的主要类型和特点 低温长时杀菌法低温长时杀菌法 高温短时杀菌法

8、高温短时杀菌法 超高温瞬时杀菌法超高温瞬时杀菌法 热杀菌的主要类型 干热杀菌 采用火焰灼烧或干热空气进行灭菌的方法 电热杀菌 亦称 “欧姆杀菌 “,利用电极将电流通过物体 ,由于阻抗损失、介质损耗等的存在,最终 使电能转化为热能,使食品内部产生热量而 达到杀菌的目的。 三、食品热处理使用的能源和加热方式 能源 气体燃料(天然气或液化气) 液体燃料(燃油等) 固体燃料(如煤、木、炭等) 电 加热方式 直接加热 间接加热:蒸汽、热水、空气 第二节 食品热处理反应的基本规律 一、 食品热破坏的反应动力学 在某一热处理条件下 食品成分的热处理破坏速率; 温度对这些破坏反应的影响。 微生物、酶等热 处理

9、的破坏速率 热破坏反应 一级反应动力学 对数规律 - dc = kc dt 式中: -dc/dt为食品成分浓度减少的速率; c为食品成分的浓度; k为一级反应的速率常数。 微生物热力致死速率曲线 D = 2.303 k 斜率为 k/2.303= -1/D , 则 Log c = log c1 - k t 2.303 D值 又称为指数递减时间 (decimal reduction time),为微生物的活菌数每减少 90,也就 是在对数坐标中 c的数值每跨过一个对数坐标 值所对应的时间 (min)。 D值的标注: DT D值的意义: D值的大小可以反映微生物的耐热性。 在同一温度下比较不同微生物

10、的 D值时, D值 愈大,表示在该温度下杀死 90% 微生物所需的时 间愈长,即该微生物愈耐热。 例: 110 热处理时,原始菌数为 1104,热 处理 3分钟后,残存的活菌数为 110,求该热处 理的 D值。 TDT值: 热力致死时间 ( thermal death time ) 值,是指在某一恒定温度条件下,将食品中的某 种微生物活菌(细菌和芽孢)全部杀死所需要的 时间( min)。试验时以热处理后接种培养时无 微生物生长作为全部活菌已被杀死的标准。 TDT值的意义: 细菌热力致死时间随致死温 度而异,它表示了不同热力致死温度时细菌及芽 孢的相对耐热性。 热破坏反应和温度的关系 Log (

11、TDT1 / TDT) = T - T1 z Z值 : 指 D值 (或 TDT值 )变化 90%所对应的温度 变化值 ( 或 F)。即 Z值为热力致死时间按 照 1/10,或 10倍变化时相应的加热温度变化 () 。 Z值越大,因温度上升而取得的杀菌 效果就越小。 Log (D1 / D) = T - T1 z 微生物热力致死速率曲线 温度系数及其与 Z值的关系 Log Q = 10 z 例 : 青豆过氧化物酶 Q10=2.5,求其 Z值 Z = 10 Log Q D值、 F值和 Z值三者之间的关系 F值 : 通常采用 121.1 为标准温度,与 此对应的热力致死时间称为 F值,又称杀 菌致死

12、值。因此 ,在 121.1 时求得的 D值 乘以 n就可得到 F值; 定义 :一定的致死温度下,将一定数量 的某种微生物全部杀死所需的时间; 意义 :可用来比较相同 Z值细菌的耐热性 , F值越大,则表明细菌耐热性越强 二、 加热对微生物的影响 微生物和食品的腐败变质 细菌、霉菌和酵母都可能引起食品的变 质,其中细菌是引起食品腐败变质的主 要原因。细菌中非芽孢细菌在自然界存 在的种类最多,污染食品的可能性也最 大,但这些菌的耐热性并不强,巴氏杀 菌既可将其杀死。 食品中的微生物是 导致食品不耐贮藏 的主要原因。 微生物和食品的腐败变质 细菌中耐热性强的是芽孢菌。酵母菌和霉 菌引起的变质多发生在

13、酸性较高的食品中 少数微生物对人类、动物或植物有病害 作用,它们被称为致病菌或病原菌。能在食 品中产生毒素的微生物(致病菌)多见于细 菌和霉菌。 二、 加热对微生物的影响 微生物的生长温度和微生物的耐热性 每种 微生物都有其最适生长温度,当温度 高于微生物的最适生长温度时,微生物的生长 就会受到抑制甚至出现死亡现象。 影响微生物耐热性的因素 微生物的种类 微生物生长和细胞(芽孢)形成的环境条件 温度; 离子环境; 非脂类有机化合物 ; 脂类; 微生物的菌龄 热处理时的环境条件 pH和缓冲介质; 离子环境; 水分活性 ; 其它介质组成分。 典型芽孢菌的耐热性参数 三、 加热对酶的影响 酶和食品的

14、质量 酶也会导致食品在加工和贮藏过程中的 质量变化,主要反映在食品的感官和营养方 面的质量降低。 这些酶主要是氧化酶类和水解酶类,包 括过氧化物酶、多酚氧化酶、脂肪氧化酶、 抗坏血酸氧化酶等。 酶的最适温度和热稳定性 温度对酶反应有明显的影响,任何一种酶 都有其最适的作用温度。 酶 稳定性 的影响因素: pH、缓冲液离子强 度和性质、底物、酶和体系中蛋白质的浓度 、保温的时间及是否存在抑制剂和活化剂、 酶的种类和来源、热处理的条件等。 酶的耐热性参数 四、 加热对食品营养成分和感官品质的影响 有益的结果 :热处理可以破坏食品中不需 要的成分;可改善营养素的可利用率;提 高蛋白质的可消化性;加热

15、也可改善食品 的感官品质等。 不良后果 :这主要体现在食品中热敏性营 养成分的损失和感官品质的劣化。 食品营养成分和感官品质指标的热耐性也主 要取决于营养素和感官指标的种类、食品的 种类,以及 pH、水分、氧气含量和缓冲盐类 等一些热处理时的条件。 第三节 食品热处理条件的选择与确定 一、热处理的条件的选择 原则: 热处理应达到相应的热处理目的; 应尽量减少热处理造成的食品营养成分的 破坏和损失; 热处理过程不应产生有害物质,满足食品 卫生要求 二、热能在食品中的传递 罐头食品的传热方式 导热 ; 对流 ; 导热对流结合型 冷点: 导热是依靠物体间接触进行热量传 递,在加热和冷却过程中,物料间

16、出现温度 梯度,传导最慢一点往往是罐头的几何中心 ,称为冷点。 n 冷点温度: 传导、对流 影响容器内食品传热的因素 表面传热系数 食品和容器的物理性质 加热介质(蒸汽)的温度和食品初始温 度之间的温度差 容器的大小 三、食品热处理条件的确定 确定食品热处理条件的过程 主要考虑两方面的因素: 微生物的耐热性参数: F、 Z 食品的传热特性参数: fh, f2, fc, jh 过程: 理论计算 实罐试验 接种试验 贮藏试验 生产线试验 贮藏试验 合适的杀菌条件 以杀菌为例 确定食品热杀菌条件的过程 罐藏食品杀菌时间及 F值的计算 安全 F值的计算 安全杀菌 F值的大小取决于所选择的对象菌 的抗热

17、性及生产实际过程中的卫生状况。如 果已知某种罐头食品杀菌时所选对象菌的 D值 ,即在所指定的温度条件下,杀死 90%原有微 生物所需时间,则安全杀菌 F值可由下式计算 求得 F0=D(Lga-Lgb) 例:某罐头厂在生产蘑菇罐头时,选择嗜热脂肪 芽孢杆菌为对象菌,经检验每克罐头食品在杀菌 前含对象菌数不超过 2个,经 121 杀菌和保温贮 藏后,允许腐败率为 0.05% 以下,试估算 425g蘑 菇罐头在标准温度下的 F0值。 罐藏食品杀菌时间的计算 改良基本法 1920年,比奇洛,基本法; 1923年,鲍尔,改良基本法。 公式计算法 了解公式法计算杀菌值和杀菌时间中各符号 的意义 步骤 列线

18、图法 The general method Improved general method 对罐头食品而言,在某一特定的温度 T下,将罐内微生物全部杀死所需的热力致 死时间为 min,罐头在该温度下加热 t min, 所取得的部分杀菌量为 A: A = t / 部分杀菌量 ( Partial sterility)的概念: 我们以横坐标表示加热时间,以致死率 为纵坐标,绘出致死率曲线图,用积分的方法 求出致死率曲线所包含的面积,即为杀菌效率 。我们将杀菌过程分为 n个温度段,在每个温度 区间的面积就是该加热时间内的杀菌效率值, 利用梯形面积公式计算出各小面积值,其总和 就是杀菌效率值。 Ai,

19、n = (Li,n+Li,n+1) ti, n/2 整个杀菌过程的总杀菌量则为: A =Aa = ta /a 当 A=100% 时,表示整个杀菌过程的达 到了 100% 的杀菌量,罐内微生物被完全杀死 。而当 A100% 时,表示杀菌过度。由此可以推算出所需的杀 菌时间。 杀菌值 (Sterilizing value)、 致死值 (Leathality)的概念 杀菌值 (F值 ): 在一定的致死温度下将一定数量的 某种微生物全部杀死所需的时间( min)。 F值要采用上下标标注, FZT。一般将标准杀 菌条件下的记为 F0 罐头食品的标准杀菌条件 条件 温度 T( ) Z( ) 常温杀菌 10

20、0(或 8090) 8(微生物对象菌) 高温杀菌 121.1 10(微生物对象菌) 超高温杀菌 135 10.1(微生物对象菌)31.4(其它食品成分) 商业无菌的理论杀菌值 F F = nD n的取值:对 PA3679, n=5;对肉毒杆菌, n=12。 F = nD 的概率学上的意义 commercial sterility 食品热杀菌条件的确定 1、实罐试验 2、实罐接种的杀菌试验 3、保温贮藏试验 4、生产线上实罐试验 四、典型的热处理工艺 工业烹饪 (Industrial cooking) 焙烤 主要用以改变食品的食用特性的处理形式 。 也可一定程度杀菌和降低水品表面水分活性 的作用

21、,使制品有一定的保藏性 。 焙( baking) :主要用于面制品和水果 烤( roasting) :主要用于肉类、坚果和蔬菜 油炸 (Frying) 主要是为了提高食品的食用品质而采 用的一种热处理手段。可以产生油炸食品 特有的色香味和质感。 油炸的工艺: 温度和时间 -取决于食品的 种类、油的温度、油炸的方法、食品的厚 度(大小)和所要达到的食用品质。 油炸 (Frying) 油炸方法: 浅层油炸( Shallow frying) 油浴油炸( Deep-fat frying) 常压油炸 真空油炸 热烫 (Blanching 或 Scalding) 是一种以灭酶为主要目的的热处理形式 , 针

22、对的对象主要是蔬菜和水果,通常是食品冷 冻、干燥或罐藏等食品加工保藏中的一种前处 理手段。 热烫还具杀菌、排除食品物料中的气体、 软化食品物料,以便于装罐等作用。蔬菜和水 果的热烫还可结合去皮,清洗和增硬等处理形 式同时进行。 热烫 (Blanching 或 Scalding) 热烫方法: 热水热烫( Hot-water blanching) 蒸汽热烫( Steam blanching) 热空气热烫( Hot-air blanching) 微波热烫 ( Microwave blanching) 热挤压 (Hot extrusion) 挤压是为了使食品物料产生特殊组织结 构和形态的一种处理形式。

23、热挤压是指物料 在挤压过程中还受到热的作用。挤压过程中 的热可以由挤压机和物料自身的摩擦和剪切 作用产生,也可由外热导入。 热挤压 (Hot extrusion) 挤压过程: 输送混合、压缩剪切、热熔均 压、成型膨化 挤压设备: 挤出机 自热式和加热式;单螺杆式和双螺杆 式;高剪切力和低剪切力 杀菌 是以杀灭微生物为主要目的的热处理形 式,根据要杀灭微生物的种类的不同可分为 巴氏杀菌和商业杀菌。 巴氏灭菌 (Pasteurisation) 经巴氏杀菌的食品物料一般贮藏期较短 , 通常只有几小时到几天,结合其它的贮藏条 件可以提高其贮藏期。 商业杀菌 (Sterilization) 杀菌的效果必

24、须借助良好的包装才能维持。 杀菌方法分类: 压力 :常压杀菌、加压杀菌 温度 -时间: 低温长时、高温短时、超高温瞬时 热介质 : 热水、水蒸气、水蒸气和空气混合物、 火焰 设备的连续化程度: 间歇、连续 杀菌和装罐密封的关系 将食品先密封于容器内,然后再进行 杀菌处理,称为 后杀菌 ; 先杀菌,后将食品冷却到常温在无菌 的条件下包装,称为 无菌包(灌)装 ; 将杀菌后的食品趁热灌装,利用食品 物料的余热对可能污染的微生物进行杀菌 , 称为 热灌装杀菌。 n 标准立式杀菌锅 n 标准卧式杀菌锅 n 静水压式杀菌设备 第四节 食品的非热杀菌 非热杀菌 (Nonthermal sterilizat

25、ion) 是指以非加热杀菌的方 式达到杀菌目的杀菌方法。 物理杀菌 : 辐照杀菌 (irradiation) 超高静压杀菌 (UHP,HHP) 脉冲电场杀菌 (PEF) 振荡磁场杀菌 (OMF) 超声波杀菌 (ultrasound) 紫外线杀菌 (UV) 脉冲光杀菌 (pulsed light) 脉冲 X射线杀菌 (pulsed X-ray) 高压电弧放电杀菌 (high voltage arc discharge) 化学杀菌 :化学杀菌剂 (sterilizing agents)杀菌 化学杀菌剂的杀菌、抑菌作用 化学杀菌剂的要求 化学杀菌剂的种类 医用和工业用消毒剂 农业用杀菌剂 食品防腐剂 工业抗菌剂 参考书 李汴生、阮征,非热杀菌技术与应用,化学工业出版社, 2004.9,北京

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 医药卫生

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。