1、山东省聊城市莘县 20152016 学年度八年级上学期期末数学试卷 一、选择题:每题 3 分,共 36 分 1下列六个图形中是轴对称图形的有( ) A3 个 B4 个 C5 个 D6 个 2若分式 有意义,则 x 的取值范围是( ) Ax1 Bx1 Cx=1 Dx1 3如果方程 有增根,那么 m 的值为( ) A1 B2 C3 D无解 4某鞋店试销一款女鞋,试销期间对不同颜色鞋的销售情况统计如下表: 颜色 黑色 棕色 白色 红色 销售量(双) 60 50 10 15 鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是( ) A平均数 B众数 C中位数 D方差 5下列分式中是最
2、简分式的是( ) A B C D 6如图,把矩形 ABCD 沿 EF 对折后使两部分重合,若1=50,则 AEF=( ) A110 B115 C120 D130 7如图,直线 a,b,c 表示交叉的公路,现要建一货物中转站,要求它到三条公路的距离相等, 则可供选择的站址有( ) A一处 B两处 C三处 D四处 8如果等腰三角形的两边长是 6cm 和 3cm,那么它的周长是( ) A9cm B12cm C12cm 或 15cm D15cm 9如图,已知ABC,AB=10,BC 边的垂直平分线交 AB、BC 于点 E、D,AC=6,则ACE 的周 长是( ) A13 B16 C11 D无法确定 1
3、0正三角形 ABC 中,BD=CE,AD 与 BE 交于点 P,APE 的度数为( ) A45 B55 C60 D75 11如图,已知:B 是线段 AD 上的一点, ABC、BDE 均为等边三角形,AE 交 BC 于 P,CD 交 BE 于 Q则下列结论成立的有( ) (1)AE=CD;(2)BP=BQ;(3)PQAD;(4)CQ=CA;(5)EP=QD A5 个 B2 个 C3 个 D4 个 12张老师和李老师同时从学校出发,步行 15 千米去县城购买书籍,张老师比李老师每小时多走 1 千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走 x 千米,依 题意,得到的方程
4、是( ) A B C D 二、填空题:每题 3 分,共 15 分 13若 的值为零,则 x 的值是 14直角三角形两锐角平分线相交所成的钝角的度数是 15一组数据 3,4,x,6,8 的平均数是 5,则这组数据的中位数是 16如图,在ABC 中,AB=AC ,AD 是 BC 边上的高,点 E、F 是 AD 的三等分点,若ABC 的 面积为 12cm2,则图中阴影部分的面积是 cm 2 17观察给定的分式: ,猜想并探索规律,那么第 n 个分式是 三、解答题:共 69 分 18化简: (1) (2) 19解方程: (1) (2) =1 20先化简( ) ,再从 0,1,2 中选一个合适的值代入求
5、值 21如图,ABE 为等腰直角三角形, ABE=90,BC=BD,FAD=30 (1)求证:ABC EBD; (2)求AFE 的度数 22已知:如图,已知ABC, (1)分别画出与ABC 关于 x 轴、y 轴对称的图形 A1B1C1 和A 2B2C2; (2)写出A 1B1C1 和 A2B2C2 各顶点坐标; (3)求ABC 的面积 23某中学准备改造面积为 1080m2 的旧操场,现有甲、乙两个工程队都想承建这项工程,经协商 后得知,甲工程队单独改造这操场比乙工程队多用 9 天;乙工程队每天比甲工程队多改造 10m2求甲乙两个工程队每天各改造操场多少平方米? 24如图已知:E 是 AOB
6、的平分线上一点,EC OA,ED OB,垂足分别为 C、D求证: (1)ECD=EDC; (2)OE 是 CD 的垂直平分线 25某中学开展“我爱祖国” 演讲比赛活动,九(1) ,九(2)班根据初赛成绩各选出 5 名选手参加 复赛,两个班各选出的 5 名选手的复赛成绩(满分为 100 分)如图所示 (1)分别求出九(1) ,九(2)复赛成绩的平均数、方差; (2)结合两班复赛成绩的平均数、方差,分析哪个班级的复赛成绩较稳定; (3)如果在每班参加复赛的选手中分别选出 2 人参加决赛,你认为哪个班的实力更强一些,并说 理由 山东省聊城市莘县 20152016 学年度八年级上学期期末数学 试卷 参
7、考答案与试题解析 一、选择题:每题 3 分,共 36 分 1下列六个图形中是轴对称图形的有( ) A3 个 B4 个 C5 个 D6 个 【考点】轴对称图形 【分析】根据轴对称图形的概念求解 【解答】解:第 1,3,4,5 个图形是轴对称图形,共 4 个 故选 B 【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折 叠后可重合 2若分式 有意义,则 x 的取值范围是( ) Ax1 Bx1 Cx=1 Dx1 【考点】分式有意义的条件 【分析】本题主要考查分式有意义的条件:分母不等于 0 【解答】解:x 10, x1 故选:A 【点评】本题考查的是分式有意义的条
8、件当分母不为 0 时,分式有意义 3如果方程 有增根,那么 m 的值为( ) A1 B2 C3 D无解 【考点】分式方程的增根 【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值,让最简 公分母(x3) =0,得到 x=3,然后代入化为整式方程的方程算出 m 的值 【解答】解:方程两边都乘(x3) , 得 x=3m 原方程有增根, 最简公分母(x 3)=0, 解得 x=3 m= x=1, 故选:A 【点评】本题考查了分式方程的增根,增根问题可按如下步骤进行:让最简公分母为 0 确定增根; 化分式方程为整式方程;把增根代入整式方程即可求得相关字母的值 4某鞋店试销一款女
9、鞋,试销期间对不同颜色鞋的销售情况统计如下表: 颜色 黑色 棕色 白色 红色 销售量(双) 60 50 10 15 鞋店经理最关心的是哪种颜色的鞋最畅销,则对鞋店经理最有意义的统计量是( ) A平均数 B众数 C中位数 D方差 【考点】统计量的选择 【专题】图表型 【分析】对鞋店经理最有意义的是对不同颜色鞋的销售数量 【解答】解:由于众数是数据中出现次数最多的数,鞋店经理最关心的是哪种颜色的鞋最畅销,即 这组数据的众数 故选 B 【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据 集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理
10、的选择 和恰当的运用 5下列分式中是最简分式的是( ) A B C D 【考点】最简分式 【分析】最简分式就是分式的分子和分母没有公因式,也可理解为分式的分子和分母的最大公因式 为 1所以判断一个分式是否为最简分式,关键是要看分式的分子和分母的最大公因式是否为 1 【解答】解:A、分式 中,分子和分母有公因式 2; B、分式 中分子、分母有公因式 yx; C、分式 中,分子、分母的最大公因式为 1; D、分式 中,分子、分母有公因式 xy 故选 C 【点评】中学中的最简分式是小学学习中的最简分数的扩充最简分式首先系数要最简;一个分式 是否为最简分式,关键看分子与分母是否互质,但表面不易判断,应
11、将分子、分母分解因式 6如图,把矩形 ABCD 沿 EF 对折后使两部分重合,若1=50,则 AEF=( ) A110 B115 C120 D130 【考点】翻折变换(折叠问题) 【专题】压轴题 【分析】根据折叠的性质,对折前后角相等 【解答】解:根据题意得:2= 3, 1+2+3=180, 2=( 18050) 2=65, 四边形 ABCD 是矩形, ADBC, AEF+2=180, AEF=18065=115 故选 B 【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据 轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等 7如图,直线 a
12、,b,c 表示交叉的公路,现要建一货物中转站,要求它到三条公路的距离相等, 则可供选择的站址有( ) A一处 B两处 C三处 D四处 【考点】角平分线的性质 【专题】作图题 【分析】根据题意可作出示意图,利用角平分线定理即可 【解答】解:由题意作图 图中小虚线和大虚线分别为所过角的平分线, 根据角平分线到两边的距离相等,我们可知图中 A、B、C、D 四处可供选择站址 故选 D 【点评】本题考查了最短路线问题,利用角平分线到两边的距离相等做题解答 8如果等腰三角形的两边长是 6cm 和 3cm,那么它的周长是( ) A9cm B12cm C12cm 或 15cm D15cm 【考点】等腰三角形的
13、性质;三角形三边关系 【分析】题目给出等腰三角形有两条边长为 6cm 和 3cm,而没有明确腰、底分别是多少,所以要进 行讨论,还要应用三角形的三边关系验证能否组成三角形 【解答】解:当腰为 3cm 时,3+3=6,不能构成三角形,因此这种情况不成立 当腰为 6cm 时,6366+3,能构成三角形; 此时等腰三角形的周长为 6+6+3=15cm 故选 D 【点评】本题考查了等腰三角形的性质和三角形的三边关系;题目从边的方面考查三角形,涉及分 类讨论的思想方法求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组 成三角形的好习惯,把不符合题意的舍去 9如图,已知ABC,AB=10
14、,BC 边的垂直平分线交 AB、BC 于点 E、D,AC=6,则ACE 的周 长是( ) A13 B16 C11 D无法确定 【考点】线段垂直平分线的性质 【专题】计算题 【分析】根据线段垂直平分线的性质得到 BE=CE,然后利用三角形周长定义和等线段代换得到 ACE 的周长=AB+AC 【解答】解:DE 垂直平分 BC, BE=CE, ACE 的周长 =AE+CE+AC=AE+BE+AC=AB+AC=10+6=16 故选 B 【点评】本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任 意一点,到线段两端点的距离相等 10正三角形 ABC 中,BD=CE,AD 与
15、BE 交于点 P,APE 的度数为( ) A45 B55 C60 D75 【考点】全等三角形的判定与性质;等边三角形的性质 【分析】根据条件三角形 ABC 是正三角形可得:AB=BC ,BD=CE,ABD= C 可以判定 ABDBCE,即可得到BAD= CBE,又知APE= ABP+BAP,故知 APE=ABP+CBE=B 【解答】解:ABC 是等边三角形, AB=BC,ABD= C=60, 在ABD 和 BCE 中 , ABDBCE(SAS) , BAD=CBE, APE=ABP+BAP, APE=ABP+CBE=B=60, 故选 C 【点评】本题主要考查等边三角形的性质和全等三角形的判定与
16、性质的知识点,解答本题的关键是 能看出APE=ABP+ BAP,还要熟练掌握三角形全等的判定与性质定理 11如图,已知:B 是线段 AD 上的一点, ABC、BDE 均为等边三角形,AE 交 BC 于 P,CD 交 BE 于 Q则下列结论成立的有( ) (1)AE=CD;(2)BP=BQ;(3)PQAD;(4)CQ=CA;(5)EP=QD A5 个 B2 个 C3 个 D4 个 【考点】全等三角形的判定与性质;等边三角形的性质 【分析】由等边三角形的性质得出 AB=AC=BC,BD=BE,ABC=EBD=60,证出 ABE=CBD,由 SAS 证明 ABECBD,得出 AE=CD, (1)正确
17、; 由全等三角形的性质得出BAP= BCQ,证出ABC=CBQ=60,由 ASA 证明 ABPCBQ,得 出 BP=BQ, (2)正确; 由全等三角形的性质得出 CQ=APCA, (4)不正确; 证明PBQ 是等边三角形,得出BPQ=60= ABC,由平行线的判定方法得出 PQAD, (3)正确; 由 AE=CD,AP=CQ ,得出 EP=QD, (5)正确;即可得出结论 【解答】解:ABC、BDE 均为等边三角形, AB=AC=BC,BD=BE,ABC=EBD=60, 180EBD=180ABC, 即ABE=CBD, 在ABE 与CBD 中, , ABECBD(SAS) , AE=CD, (
18、1)正确; BAP=BCQ, ABC=EBD=60, CBQ=180602=60, ABC=CBQ=60, 在ABP 与 CBQ 中, , ABPCBQ(ASA ) , BP=BQ, (2)正确; CQ=APCA, ( 4)不正确; CBQ=60,BP=BQ , PBQ 是等边三角形, BPQ=60=ABC, PQAD, (3)正确; AE=CD,AP=CQ, EP=QD, (5)正确; 正确的结论有 4 个故选:D 【点评】本题考查了等边三角形的判定与性质、全等三角形的判定及性质、平行线的判定等知识; 本题综合性强,难度不大,证明三角形全等是解决问题的关键 12张老师和李老师同时从学校出发,
19、步行 15 千米去县城购买书籍,张老师比李老师每小时多走 1 千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走 x 千米,依 题意,得到的方程是( ) A B C D 【考点】由实际问题抽象出分式方程 【专题】应用题;压轴题 【分析】关键描述语是:“比李老师早到半小时”;等量关系为:李老师所用时间 张老师所用时间 = 【解答】解:李老师所用时间为: ,张老师所用的时间为: 所列方程为: = 故选:B 【点评】未知量是速度,有路程,一定是根据时间来列等量关系的找到关键描述语,找到等量关 系是解决问题的关键 二、填空题:每题 3 分,共 15 分 13若 的值为零,则 x
20、 的值是 1 【考点】分式的值为零的条件 【分析】分式的值为零,分子|x|1=0 且分母 x2+2x30,由此求得 x 的值 【解答】解:依题意得:|x|1=0 且 x2+2x30, 所以 x=1 且(x+3) (x 1)0, 所以 x=1 故答案是:1 【点评】本题考查了分式的值为零的条件若分式的值为零,需同时具备两个条件:(1)分子为 0;(2)分母不为 0这两个条件缺一不可 14直角三角形两锐角平分线相交所成的钝角的度数是 135 【考点】直角三角形的性质;三角形内角和定理 【分析】本题可根据直角三角形内角的性质和三角形内角和为 180进行求解 【解答】解:如图:AE、BD 是直角三角形
21、中两锐角平分线, OAB+OBA=902=45, 两角平分线组成的角有两个:BOE 与 EOD 这两个交互补, 根据三角形外角和定理,BOE= OAB+OBA=45, EOD=18045=135, 故答案为:135 【点评】本题考查直角三角形内角的性质及三角形内角和,弄清题意即可 15一组数据 3,4,x,6,8 的平均数是 5,则这组数据的中位数是 4 【考点】中位数;算术平均数 【专题】计算题 【分析】根据数据 3,4,x,6,8 的平均数是 5,求出 x 的值,再将该组数据从小到大依次排列即 可找到该组数据的中位数 【解答】解:3,4,x,6,8 的平均数是 5, 3+4+x+6+8=5
22、5, 解得 x=4, 则该组数据为 3,4,4,6,8 中位数为 4 故答案为:4 【点评】本题主要考查了中位数的定义:将一组数据从小到大依次排列,把中间数据(或中间两数 据的平均数)叫做中位数 16如图,在ABC 中,AB=AC ,AD 是 BC 边上的高,点 E、F 是 AD 的三等分点,若ABC 的 面积为 12cm2,则图中阴影部分的面积是 6 cm 2 【考点】轴对称的性质;等腰三角形的性质 【分析】由图,根据等腰三角形是轴对称图形知,CEF 和BEF 的面积相等,所以阴影部分的面 积是三角形面积的一半 【解答】解:ABC 中,AB=AC,AD 是 BC 边上的高, ABC 是轴对称
23、图形,且直线 AD 是对称轴, CEF 和BEF 的面积相等, S 阴影 =SABD, AB=AC,AD 是 BC 边上的高, BD=CD, SABD=SACD= SABC, SABC=12cm2, S 阴影=12 2=6cm2 故答案为:6 【点评】本题考查了等腰三角形的性质及轴对称性质;利用对称发现并利用CEF 和BEF 的面积 相等是正确解答本题的关键 17观察给定的分式: ,猜想并探索规律,那么第 n 个分式是 【考点】分式的定义 【专题】规律型 【分析】先看分子,后面一项是前面一项的 2 倍(第一项是 1,第二项是2,第 n 项是 2n1) ;再 看分母,后面一项是前面一项的 x 倍
24、(第一项是 x,第二项是 x2,第 n 项是 xn) ;据此可以找寻 第 n 个分式的通式 【解答】解:先观察分子: 1、2 1、2 2、2 3、2 n1; 再观察分母: x、x 1、x 2、x n; 所以,第 n 个分式 ; 故答案是: 【点评】本题考查了分式的定义解答此题的关键是找出分子分母的变化规律找其中的规律是, 采用了归纳法 三、解答题:共 69 分 18化简: (1) (2) 【考点】分式的混合运算 【分析】 (1)直接把分子相加减即可; (2)先算括号里面的,再算除法即可 【解答】解:(1)原式= =1; (2)原式= = = 【点评】本题考查的是分式的混合运算,熟知分式混合运算
25、的法则是解答此题的关键 19解方程: (1) (2) =1 【考点】解分式方程 【专题】计算题;分式方程及应用 【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式 方程的解 【解答】解:(1)去分母得:x=2x4, 解得:x=4, 经检验 x=4 是分式方程的解; (2)去分母得:x 24x+416=x24, 解得:x= 2, 经检验 x=2 是增根,分式方程无解 【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想” ,把分式方程转化为整式方 程求解解分式方程一定注意要验根 20先化简( ) ,再从 0,1,2 中选一个合适的值代入求值 【考
26、点】分式的化简求值 【专题】计算题;分式 【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得 到最简结果,把 a=2 代入计算即可求出值 【解答】解:原式= = = , 当 a=2 时,原式=2 【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键 21如图,ABE 为等腰直角三角形, ABE=90,BC=BD,FAD=30 (1)求证:ABC EBD; (2)求AFE 的度数 【考点】全等三角形的判定与性质;等腰直角三角形 【分析】 (1)根据等腰直角三角形的性质得到 AB=BE,根据邻补角的定义得到ABE=DBE=90 , 根据全等三角形的判
27、定定理即可得到结论; (2)根据全等三角形的性质得到BAC=BED,根据三角形的内角和得到 BED+D=90,等量代 换得到BAC+D=90,即可得到结论 【解答】 (1)证明:ABE 为等腰直角三角形, AB=BE, ABE=90, ABE=DBE=90, 在ABC 与BDE 中, , ABCEBD; (2)解:ABCEBD, BAC=BED, BED+D=90, BAC+D=90, AFD=90, AFE=90 【点评】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,垂直的定义,熟练掌握全 等三角形的性质是解题的关键 22已知:如图,已知ABC, (1)分别画出与ABC 关于 x
28、轴、y 轴对称的图形 A1B1C1 和A 2B2C2; (2)写出A 1B1C1 和 A2B2C2 各顶点坐标; (3)求ABC 的面积 【考点】作图-轴对称变换 【分析】 (1)根据关于 x、y 轴对称的点的坐标特点画出图形即可; (2)根据各点在坐标系内的位置写出各点坐标; (3)根据 SABC=S 四边形 CDEFSACDSABESBCF 即可得出结论 【解答】解:(1)如图所示: (2)由图可知, A1(0,2) ,B 1(2,4) ,C 1(4,1) , A2(0,2) ,B 2(2,4) ,C 2( 4,1) (3)S ABC=S 四边形 CDEFSACDSABESBCF =34
29、14 22 23 =12232 =5 【点评】本题考查的是轴对称变换,熟知关于坐标轴对称的点的坐标特点是解答此题的关键 23某中学准备改造面积为 1080m2 的旧操场,现有甲、乙两个工程队都想承建这项工程,经协商 后得知,甲工程队单独改造这操场比乙工程队多用 9 天;乙工程队每天比甲工程队多改造 10m2求甲乙两个工程队每天各改造操场多少平方米? 【考点】分式方程的应用 【分析】设甲工程队每天改造操场 x 平方米,则乙工程队每天改造操场(x+10)平方米,根据甲工 程队单独改造这操场比乙工程队多用 9 天;列出方程解答即可 【解答】解:设甲工程队每天改造操场 x 平方米,则乙工程队每天改造操
30、场(x+10)平方米,由题 意得 =9 解得:x=30 经检验 x=30 是原方程的解,且符合题意, x+10=40 答:甲工程队每天改造操场 30 平方米,乙工程队每天改造操场 40 平方米 【点评】此题考查分式方程的实际运用,掌握工作总量、工作效率、工作时间三者之间的关系是解 决问题的关键 24如图已知:E 是 AOB 的平分线上一点,EC OA,ED OB,垂足分别为 C、D求证: (1)ECD=EDC; (2)OE 是 CD 的垂直平分线 【考点】角平分线的性质;全等三角形的判定与性质 【专题】证明题 【分析】 (1)根据角平分线上的点到角的两边距离相等可得 EC=DE,再根据等边对等
31、角证明即可; (2)利用“HL” 证明 RtOCE 和 RtODE 全等,根据全等三角形对应边相等可得 OC=OD,然后根 据等腰三角形三线合一证明 【解答】证明:(1)E 是AOB 的平分线上一点,ECOA ,ED OB, EC=DE, ECD=EDC; (2)在 RtOCE 和 RtODE 中, , RtOCERtODE(HL ) , OE 是AOB 的平分线, OE 是 CD 的垂直平分线 【点评】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,等腰 三角形三线合一的性质,熟记各性质是解题的关键 25某中学开展“我爱祖国” 演讲比赛活动,九(1) ,九(2)班根
32、据初赛成绩各选出 5 名选手参加 复赛,两个班各选出的 5 名选手的复赛成绩(满分为 100 分)如图所示 (1)分别求出九(1) ,九(2)复赛成绩的平均数、方差; (2)结合两班复赛成绩的平均数、方差,分析哪个班级的复赛成绩较稳定; (3)如果在每班参加复赛的选手中分别选出 2 人参加决赛,你认为哪个班的实力更强一些,并说 理由 【考点】方差;条形统计图;加权平均数 【分析】 (1)从条形图中得到各个选手的得分,由平均数和方差的公式计算; (2)观察数据发现:平均数相同,但是九(1)班方差比九(2)班小,所以九(1)班的复赛成绩 较稳定; (3)分别计算前两名的平均分,比较其大小 【解答】
33、解:(1)九(1)班的选手的得分分别为 85,75,80,85,100, 九(1)班的平均数=(85+75+80+85+100)5=85, 九(1)班的方差 S12=(8585) 2+(7585) 2+(8085) 2+(85 85) 2+(10085) 25=70; 九(2)班的选手的得分分别为 70,100,100,75,80, 九(2)班平均数=(70+100+100+75+80)5=85, 九(2)班的方差 S22=(7085) 2+(10085) 2+(10085 ) 2+(75 85) 2+(8085) 25=160; (2)平均数一样的情况下,九(1)班方差小,成绩比较稳定; (3)九(1)班、九(2)班前两名选手的平均分分别为 92.5 分,100 分, 在每班参加复赛的选手中分别选出 2 人参加决赛,九( 2)班的实力更强一些 【点评】此题考查了条形统计图,读懂统计图,从统计图中得到必要的信息是解决问题的关键条 形统计图能清楚地表示出每个项目的数据理解平均数、方差的概念,并能根据它们的意义解决问 题