导数公式的证明(最全版).doc

上传人:11****ws 文档编号:4199487 上传时间:2019-10-03 格式:DOC 页数:13 大小:38KB
下载 相关 举报
导数公式的证明(最全版).doc_第1页
第1页 / 共13页
导数公式的证明(最全版).doc_第2页
第2页 / 共13页
导数公式的证明(最全版).doc_第3页
第3页 / 共13页
导数公式的证明(最全版).doc_第4页
第4页 / 共13页
导数公式的证明(最全版).doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、导数的定义:f(x)=lim y/x x0 (下面就不再标明 x0 了) 用定义求导数公式 (1)f(x)=xn 证法一:(n 为自然数) f(x) =lim (x+x)n-xn/x =lim (x+x-x)(x+x)(n-1)+x*(x+x)(n-2)+.+x(n-2)*(x+x)+x(n- 1)/x =lim (x+x)(n-1)+x*(x+x)(n-2)+.+x(n-2)*(x+x)+x(n-1) =x(n-1)+x*x(n-2)+x2*x(n-3)+ .x(n-2)*x+x(n-1) =nx(n-1) 证法二:(n 为任意实数) f(x)=xn lnf(x)=nlnx (lnf(x)=

2、(nlnx) f(x)/f(x)=n/x f(x)=n/x*f(x) f(x)=n/x*xn f(x)=nx(n-1) (2)f(x)=sinx f(x) =lim (sin(x+x)-sinx)/x =lim (sinxcosx+cosxsinx-sinx)/x =lim (sinx+cosxsinx-sinx)/x =lim cosxsinx/x =cosx (3)f(x)=cosx f(x) =lim (cos(x+x)-cosx)/x =lim (cosxcosx-sinxsinx-cosx)/x =lim (cosx-sinxsinx-cos)/x =lim -sinxsinx/x

3、=-sinx (4)f(x)=ax 证法一: f(x) =lim (a(x+x)-ax)/x =lim ax*(ax-1)/x (设 ax-1=m,则 x=loga(m+1)) =lim ax*m/loga(m+1) =lim ax*m/ln(m+1)/lna =lim ax*lna*m/ln(m+1) =lim ax*lna/(1/m)*ln(m+1) =lim ax*lna/ln(m+1)(1/m) =lim ax*lna/lne =ax*lna 证法二: f(x)=ax lnf(x)=xlna lnf(x) =xlna f (x)/f(x)=lna f (x)=f(x)lna f (x)

4、=axlna 若 a=e,原函数 f(x)=ex 则 f(x)=ex*lne=ex (5)f(x)=logax f(x) =lim (loga(x+x)-logax)/x =lim loga(x+x)/x/x =lim loga(1+x/x)/x =lim ln(1+x/x)/(lna*x) =lim x*ln(1+x/x)/(x*lna*x) =lim (x/x)*ln(1+x/x)/(x*lna) =lim ln(1+x/x)(x/x)/(x*lna) =lim lne/(x*lna) =1/(x*lna) 若 a=e,原函数 f(x)=logex=lnx 则 f(x)=1/(x*lne)

5、=1/x (6)f(x)=tanx f(x) =lim (tan(x+x)-tanx)/x =lim (sin(x+x)/cos(x+x)-sinx/cosx)/x =lim (sin(x+x)cosx-sinxcos(x+x)/(xcosxcos(x+x) =lim (sinxcosxcosx+sinxcosxcosx- sinxcosxcosx+sinxsinxsinx)/(xcosxcos(x+x) =lim sinx/(xcosxcos(x+x) =1/(cosx)2=secx/cosx=(secx)2=1+(tanx)2 (7)f(x)=cotx f(x) =lim (cot(x+x

6、)-cotx)/x =lim (cos(x+x)/sin(x+x)-cosx/sinx)/x =lim (cos(x+x)sinx-cosxsin(x+x)/(xsinxsin(x+x) =lim (cosxcosxsinx-sinxsinxsinx-cosxsinxcosx- cosxsinxcosx)/(xsinxsin(x+x) =lim -sinx/(xsinxsin(x+x) =-1/(sinx)2=-cscx/sinx=-(secx)2=-1-(cotx)2 (8)f(x)=secx f(x) =lim (sec(x+x)-secx)/x =lim (1/cos(x+x)-1/co

7、sx)/x =lim (cosx-cos(x+x)/(xcosxcosx) =lim (cosx-cosxcosx+sinxsinx)/(xcosxcos(x+x) =lim sinxsinx/(xcosxcos(x+x) =sinx/(cosx)2=tanx*secx (9)f(x)=cscx f(x) =lim (csc(x+x)-cscx)/x =lim (1/sin(x+x)-1/sinx)/x =lim (sinx-sin(x+x)/(xsinxsin(x+x) =lim (sinx-sinxcosx-sinxcosx)/(xsinxsin(x+x) =lim -sinxcosx/(

8、xsinxsin(x+x) =-cosx/(sinx)2=-cotx*cscx (10)f(x)=xx lnf(x)=xlnx (lnf(x)=(xlnx) f(x)/f(x)=lnx+1 f(x)=(lnx+1)*f(x) f(x)=(lnx+1)*xx (12)h(x)=f(x)g(x) h(x) =lim (f(x+x)g(x+x)-f(x)g(x)/x =lim (f(x+x)-f(x)+f(x)*g(x+x)+(g(x+x)-g(x)-g(x+x)*f(x)/x =lim (f(x+x)-f(x)*g(x+x)+(g(x+x)-g(x)*f(x)+f(x)*g(x+x)- f(x)*

9、g(x+x)/x =lim (f(x+x)-f(x)*g(x+x)/x+(g(x+x)-g(x)*f(x)/x =f(x)g(x)+f(x)g(x) (13)h(x)=f(x)/g(x) h(x) =lim (f(x+x)/g(x+x)-f(x)g(x)/x =lim (f(x+x)g(x)-f(x)g(x+x)/(xg(x)g(x+x) =lim (f(x+x)-f(x)+f(x)*g(x)-(g(x+x)- g(x)+g(x)*f(x)/(xg(x)g(x+x) =lim (f(x+x)-f(x)*g(x)-(g(x+x)-g(x)*f(x)+f(x)g(x)- f(x)g(x)/(xg(

10、x)g(x+x) =lim (f(x+x)-f(x)*g(x)/(xg(x)g(x+x)-(g(x+x)- g(x)*f(x)/(xg(x)g(x+x) =f(x)g(x)/(g(x)*g(x)-f(x)g(x)/(g(x)*g(x) =f(x)g(x)-f(x)g(x)/(g(x)*g(x)x (14)h(x)=f(g(x) h(x) =lim f(g(x+x)-f(g(x)/x =lim f(g(x+x)-g(x)+g(x)-f(g(x)/x (另 g(x)=u,g(x+x)-g(x)=u) =lim (f(u+u)-f(u)/x =lim (f(u+u)-f(u)*u/(x*u) =li

11、m f(u)*u/x =lim f(u)*(g(x+x)-g(x)/x =f(u)*g(x)=f(g(x)g(x) (反三角函数的导数与三角函数的导数的乘积为 1,因 为函数与反函 数关于 y=x 对称,所以 导数也关于 y=x 对称,所以 导数的乘积为 1) (15)y=f(x)=arcsinx 则 siny=x (siny)=cosy 所以 (arcsinx)=1/(siny)=1/cosy =1/1-(siny)2 (siny=x) =1/1-x2 即 f(x)=1/1-x2 (16)y=f(x)=arctanx 则 tany=x (tany)=1+(tany)2=1+x2 所以 (ar

12、ctanx)=1/1+x2 即 f(x)= 1/1+x2 总结一下 (xn)=nx(n-1) (sinx)=cosx (cosx)=-sinx (ax)=axlna (ex)=ex (logax)=1/(xlna) (lnx)=1/x (tanx)=(secx)2=1+(tanx)2 (cotx)=-(cscx)2=-1-(cotx)2 (secx)=tanx*secx (cscx)=-cotx*cscx (xx)=(lnx+1)*xx (arcsinx)=1/1-x2 (arctanx)=1/1+x2 f(x)g(x)=f(x)g(x)+f(x)g(x) f(x)/g(x)=f(x)g(x)-f(x)g(x)/(g(x)*g(x) f(g(x)=f(g(x)g(x)

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 实用文档资料库 > 策划方案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。