1、第 1 页 共 19 页 + 爬杆机器人理论方案设计说明书 学校名称: 中国计量学院 学生队长: 学生队员: 指导教师: 联系方式: 二 0 0 五年一月 第 2 页 共 19 页 目录 一方案构思-1 二机械部分-3 三. 电控部分-17 四设计小结-19 第 3 页 共 19 页 一 方案构思 我们通过三个手臂来抓紧杆件再通过手臂上的电机来实现机器人的爬升和下降。 原理上两个就能实现,但三个手臂是一作联结,二可起稳定作用。手臂上升下降是通过齿 轮齿条来实现的。 二机械部分 1机器人的整体装配图如下: 图 1 我们是通过三个手臂爬杆的,上手臂装在一个齿条的最上端,并且固 第 4 页 共 19
2、 页 定,在具体设计时我们可以使上手臂有一定的上下和左右转动范围,具体 的设计将在下面介绍。下手臂装在下杆C上齿条的下端,中间手臂固定在滑 槽上,上手臂的上升和下降是通过装在滑槽上端的电动机带动齿轮啮合齿 条来实现的.下手臂的上升和下降是通过装在滑槽下端的电动机带动齿轮 啮合齿条来实现的,中间手臂的升降是通过上下两对齿轮齿条反转来实现 的。 2路面行走结构 在地上行走,我们通过装在下手臂上的三个车轮来实现地面上的行走,动力由 后车轮上的两个电机来提供,用两个电机主要是为了能实现走弯路,具体的三视图形 如下: 图 2 底部车轮结构 第 5 页 共 19 页 2 机器手臂的设计 图 3 机械手的结
3、构 我们设计的这个机器手采用了曲柄滑块机构,A,B,C 点处安装了橡 胶皮,1,2 两点固定在支撑板上,当滑块 W 向前移动时,根据杆子的结 构,A,B,C 点将向中心收缩,产生一个收缩的趋势,就抓紧杆件。当滑 块 W 向后移动时,A,B,C 点会张开,即松开杆件。再配合机构的移动构 件,机械手就能很好的实现上升和下降。 在本方案中,由曲柄滑块机构的一系列动作,使机械手实现抱紧松开 的动作,机械手的夹紧依靠滑块使 3 个橡胶皮与构件紧紧地接触。在接触 的时间内实现另一个机械手的升降,在松开杆件的时间内实现自身的升降。 这两段时间的长度很难控制,可以说光靠电机是不可能实现的。此外考虑 到机械手垂
4、直夹紧杆件时支撑板所受的力矩很大,难以锁住杆件,因此可 第 6 页 共 19 页 以改变机械手臂与杆件的角度来减小力矩,但角度不能太小,太小的话就 会使上升的速度变慢,因此角度应在 7080 度之间为好,具体的角度 要计算后为准。 机械手臂是这个机器人的主体,在这个设计过程中我们花了好多时间 查阅了很多资料,最后选用了这个曲柄滑块机构,在设计时我们想了很多, 最初设计时觉得比较容易,可是真正设计时碰到了很多困难。 其中最主要的问题是如何使手臂按我们要求的实现放开和抓紧,特别 是时间上的控制最重要。我们刚开始时想到了凸轮来控制,凸轮能够实现, 但是也有缺陷,就是凸轮的设计难度较大,时间上的控制也
5、很难,我大致 算了一下,如果我的转速是 10r/min ,那么转一圈要六秒,那么抓紧的 时间是 3 秒,而放开的时间是 1.5 秒。那么物体上升的时间很短,难以实 现。 后来我们确定用电磁铁来控制,电磁铁很容易通过单片机来控制时间, 特别是三个手臂之间的协调可以比较准确的控制。可用电磁铁也有缺点, 就是电磁铁的磁性会影响单片机的运行,那样就会给电机控制带来问题。 但在外面加上一些防磁场的装置就会减少影响。因此最后确定用电磁铁机 构,这样在计算少的同时更容易控制时间以及各方面的协调。 第 7 页 共 19 页 电磁铁手臂的设计图及连杆机构图 图 4 电磁铁手臂的设计 图 5 连杆机构图 电磁铁的
6、工作过程:当在地面行走时,通过单片机控制使手臂全都张 开,这样就能在行进后立刻抓住杆件。抓住后就通过编程来控制使手臂, 使三个手臂松开和抓紧的循环过程,同时通过电机的转动来实现手臂的上 第 8 页 共 19 页 升和下降。具体的过程如下: 上手臂 中手臂 下手臂 地面行走过程 松开 松开 松开 上手臂上升 松开 抓紧 抓紧 中手臂上升 抓紧 松开 抓紧 下手臂上升 抓紧 抓紧 松开 上手臂上升 松开 抓紧 抓紧 表 1 机械手臂工作的具体过程 为了实现抓不同直径的杆件,我们设计了使装在滑块上的两根杆的长 度可以通过一个滑杆机构来改变,就是一根杆放在另一个滑筒内,可以抽 动来无级改变杆的长度,然
7、后用一个紧固螺钉来夹紧,结构如下: 图 6 滑杆机构 但我们设计的手臂不能爬无限杆的直径,它是有一定的范围的,而我 们设计的手臂是可以爬升直径 40 到 50 毫米的任何杆件,只要调节两根杆 的长度就能实现,在这我设计了两个极限位置的杆件,设计如下: 考虑到我们设计机器人是从地面滑行的,因此我们手臂张开时要能够 抓住杆件,即手臂 B,C 两点的距离必须大与杆的直径,否则就不能进行 下一步的运动。还有我们设计的手臂上的三点,要分别抓在圆的三等分上, 第 9 页 共 19 页 这样就能更加抓紧杆件,由于抓不同直径的杆件时,三个橡胶皮运动的距 离是不一样的,因此每次都要调节滑块两端杆的长度,使三个橡
8、胶皮能同 时和杆件接触抓紧。根据图形我们知道滑块移动的距离就是电磁铁吸引铁 块的距离,因此当杆件是 40 毫米时,滑块移动的距离是 17.03 毫米,则 电磁铁和铁块之间的长度也是 17.03 毫米,杆 1 的长度为 19.07 毫米;当 直径是 50 毫米时滑快移动的距离是 5.1 毫米,则电磁铁和铁块之间的长 度也是 5.1 毫米,杆 1 的长度为 29.93 毫米。具体图形如下: 图 7 图 8 第 10 页 共 19 页 图 9 机器人原始、极限状态图 第 11 页 共 19 页 图 10 机器人爬管的四个过程 主要任务:攀爬一个垂直距离 L=68mm 运动过程:1、初始状态杆 A、杆
9、 C 缩于杆 A 内至整体呈最短状态,为 300mm 长; 2、第一步运动杆 B、杆 C 的机械手抓牢攀爬物,杆 A 的机械手呈松弛状态。 由电机通过齿轮齿条啮合的形式,驱动杆 A 上升一额定距离 L=68mm,移动完毕, 杆 A 的机械手抓牢攀爬物,同时,杆 B 的机械手松开; 3、第二步运动此时,杆 A、杆 C 的机械手抓牢攀爬物,杆 B 由电机通过绳索 拉升一额定距离 L=68mm,拉升完毕,杆 B 的机械手抓牢攀爬物,同时,杆 C 的机 械手松开; 4、第三步运动此时,杆 A、杆 B 的机械手是抓牢攀爬物的,杆 C 由电机通过 齿轮齿条啮合的形式,驱动杆 C 上升一额定距离 L=68m
10、m; 第 12 页 共 19 页 5、回复至初始状态,再重复循环第一、二、三步的运动; 6、下降过程与理论上与上升步骤相反,故不必再赘述。 通过上面的运动步骤,机器人可实现垂直杆件上的攀爬。 主要参数: 杆 A 长 a=133mm, 杆 B 长 b=170mm, 杆 C 长 c=a=133mm; 驱动杆 A 的电机转速为 n1=48r/min, 上拉杆 B 的电机转速为 n2=50r/min, 驱动杆 C 的电机转速为 n3=n1=48r/min; 与 A 啮合的的齿轮半径为 r1=10mm, 拉升杆 B 的电机的皮带盘的半径为 r2=10mm, 与 C 啮合的齿轮半径为 r3=10mm, 计
11、算步骤: 尺寸及其质量 机械手质量:1、有机玻璃板架质量(2 块) m1=L*w*d* =200*80*mm*1.4g/cm=22.4g 2、电磁铁质量(2 块) m2=d*(l1+l2)* h-*r =5*(40+35)*20-*5mm *7.6 g/cm=54g 3、弹簧质量(1 只) m3=1g 4、橡胶皮质量(3 只) 图 11 立体图及其尺寸 第 13 页 共 19 页 m4= v= *r*d*h=0.95 g/cm*25*(2*10/360)*7*20=0.58g 5、滑块质量(1 只) m5=30g 6、连杆质量(5 根) m6= (L1+L2+L3+L4+L5 )hd=7.8
12、g/cm*(250*20*3)mm=117g 7、联结螺栓螺母质量(7 只) m7=2g 则一个机械手的质量为 M1=2*m1+2*m2+m3+3*m4+m5+5*m6+7*m7 =2*22.4+2*54+1+3*0.58+30+117+7*2 =316.54g 第 14 页 共 19 页 联杆质量 图 12 A 杆视图及其尺寸 A 杆 体积 Va=V 侧+V 底 铝材(密度 2.7 g/cm) =2*(W1+W2+H1+H2)*L*D+2*(10H1+10W2)*2D =2*(78+58+138+118)*28*1+2*2*(10*138+10*58) =29.792cm 质量 Ma=2.7
13、*29.792=80.4384g 第 15 页 共 19 页 图 13 B 杆的视图及尺寸 B 杆 体积 Vb 整框 V1=117*1*(100+45*2+25*2+10*2+15*2+28*2+80)=49842 mm 截空 V2=1*117*80*2=18720 mm 挡板 V3=80*10*1=800mm 则 Vb= V1- V2+ V3=49842-18720+800=31922 mm=31.922 cm 质量 Mb=2.7*31.922=86.1894g C 杆 质量 Mc=Ma=80.4384g 电机质量:我们共用到 4 个直流电机,每个电机质量约为 35g 齿条质量:我们共用到两
14、对齿轮齿条传动 每个齿条的质量为 m=LWH =(14*118*6) mm*7.8 g/cm=77.3136g B 杆上 我们设计其半径为 R=1mm, 长 L=60mm,材质为钢 转轴的质量 M=R L =(*1*60) mm*7.8 g/cm=1.4703g (2 只) 运动计算 1、距离 L 预定一个动作周期的攀爬距离 S=68mm 第 16 页 共 19 页 (一个周期内) 2、 时间 T 上升过程 1、 杆 A 的攀爬时间 T1=L/V1,V1=2nr1/60(mm/s)=n1r1/30(mm/s) , 则 T1=30SL(n1r1)=30*68/(80*6)=1.352817016
15、s,取 T1=1.36s ; 2、杆 B 的攀爬,由于齿轮齿条的运动与 A 杆上升时完全相反,故其上升 时间为时间 T2=T1=1.36s; 3、杆 C 的的个参数与杆 A 相同,故其攀爬时间与 A 相等,即 T3=1.36s; 由以上各段时间相加就是杆每上升完整的一段距离 L 所用的时间,即总时 间 T=T1+T2+T3=1.36+1.36+1.36=4.08S,由此可得爬升的平均速度 V=L/T=68/4.3=16.67mm/s。 下降过程 设平均速度为 V,攀爬杆长为 P,在杆上时间为 T=4min,扣除机器人本身 的高度 300mm,则实际在杆上攀爬路程为(2P-2*300)mm。 下
16、降过程我们有两个方案备选。 方案一:采用与上升过程相反的状态,则下降的平均速度 V=V=16.67mm/s,可由 2P-2*300=VT=16.67mm/s*4min*60s/min ,则可知攀爬杆长 P=2300.4mm; 方案二:采用下滑的方式, (P-300)/15.81+(P-300)/ V=240 假设 V=16.67n,下滑时间为 T 则 P=240*16.67n/(n+1)+300 当 n=2 时,P=2967.2mm, T=240/3=80s 当 n=3 时,P=3300.6mm, T=240/4=60s 当 n=4 时,P=3500.64mm, T=240/5=48s 当 n
17、=5 时,P=3634mm, T=240/6=40s . . . . . . . . . 虽然采用方案二能大大增加机器人的爬升高度,但考虑到下滑速度较快, 不稳定因素较多,为保险起见,我们决定采用方案一。 有关齿轮齿条 传动的计算 :齿轮模数 m=1mm 齿数 z1=20 齿顶高系数 ha*=1 顶隙系数 c*=0.25 分度圆压力角 0 分度圆直径 d=mz=1*20=20mm 齿顶圆直径 da=m(z+2ha*)=1*(20+2*1)=22mm 齿根圆直径 df=mz-2m(ha*+c*)=1*20-2*1*(1+0.25)=17.5mm 齿条齿形角 0 齿厚、齿槽宽 s=e=m/2=*1
18、/2=1.57mm 齿顶高 ha=(ha*+c*)m=(1+0.25)*1=1.25mm 齿轮齿条的重合度 1=20*(tan a1-tan )+2ha*/(sin0 *cos0 )/2 =20*(tanarc(cos20/22)-tan20)+2*1/(sin0 *cos0 ) /2 =1.290530458 max=1.981 第 17 页 共 19 页 完全符合要求 电磁铁的吸力计算: 图 14 G 为重力 G=14.7N,F 为电磁铁的吸力,U 为摩擦系数 U=1.2,F3 为最大弹簧弹力 F3=2N,W 为转 距,F1 为压力, 则 F4=F-F3,G=F4*COS10*U=F4=G
19、/(COS10*U) , 则 F=F4+F3=G/(COS10*U)+ F3=14.7/(COS10*1.2)+2=14.44N 因为每次有两根杆是抓紧的,因此每根杆上的吸力为 14.44/2=7.22N 电磁铁的吸力要大于 7.22N。 三 电机控制部分 我们的机器手臂控制是通过单片机来定时来控制电机和电磁铁的通电和断电,具体的 时间控制我们通过计算如下 行程 时间段 电动机控制 电磁铁控制 单位(S) 车轮 上手 臂 下手 臂 上手 臂 中手 臂 下手臂 地面行程 0-28 开 关 关 关 关 关 调整过程 28-30 关 关 关 关 开 开 爬升过程 30-132 关 / / / / /
20、 暂停过程 132-168 关 关 关 开 开 开 第 18 页 共 19 页 下降过程 168-270 关 调整过程 270-272 关 关 关 开 开 开 回程 272-300 开 关 关 关 关 关 表 2 整个爬管过程的时间分布 表 3 爬管过程的时间分布 注:手臂的电动机正转是使本身手臂上升的状态,反转则是与其相反的 转动。这是按我们的要求设计的。 虽然我们完全可以通过单片机来控制时间,可是我们为了防止在中途出现我们没有遇到的问 题,因此我们有加入了一些优先级,通过遥控来控制或者用电线直接控制。 具体的手臂爬升编程如下: P1.0 控制上手臂的电机正转 P1.4 控制上手臂的电磁铁
21、P1.1 控制上手臂的电机反转 P1.5 控制中手臂的电磁铁 P1.2 控制下手臂的电机正转 P1.6 控制下手臂的电磁铁 P1.3 控制下手臂的电机反转 我们选用方式一,T0 来定时,晶振是 6MHZ,则 T=2us 定时 1.36S 20 个循环周期 则单个定时时间 1.36/20=0.068S, 定时初值 X=M-定时值/T=65536-68000/2=31536=7B2CH 杆顶暂停时间T=36S 500 个循环周期 进程 时间段 电动机控制 电磁铁的控制 单位(S) 上手臂 下手臂 上手 臂 中手 臂 下手 臂 上手臂上升 0-1.36 开(正) 关 关 开 开 中手臂上升 1.36-2.73(1.36) 开(反) 开(反) 开 关 开 下手臂上升 2.734.08(1.36) 关 开(正) 开 开 关 下手臂下降 0-1.36 关 开(反) 开 开 关 中手臂下降 1.36-2.73(1.36) 开(正) 开(正) 开 关 开 上手臂下降 2.73-4.08(1.36) 开(反) 关 关 开 开 第 19 页 共 19 页 则单个定时时间 36/500=0.072S, 定时初值 X=M-定时值/T=65536-72000/2=29536=7360H