1、-各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有-系(部): 专业班级: 姓名: 学号: 装 订 线 内 不 要 答 题 浙江农林大学天目学院 2012 - 2013 学年第 二 学期期中考试卷课程名称: 微积分A 课程类别: 必修 考试方式: 闭卷 注意事项:1、本试卷满分100分。2、考试时间 120分钟。题号一二三四五得分得分评阅人得分一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的选项填在题后的括号内。每小题3分,共21分)1. 设向量,当时,则l等于 ( D )。 A. B. C. D. 2. 平面 ( B )。 A. 平行于平面 B
2、. 平行于y轴 C. 垂直于y轴 D. 垂直于x轴3. 设函数的定义域 ( C )。 A. B. C. D. 4. 下列函数在(0,0)点处极限存在的是 ( D )。 A. B. C. D. 5. 设函数,则在原点处的 ( D )。 A. 偏导数不存在且连续 B. 偏导数不存在且不连续 C. 偏导数存在且连续 D. 偏导数存在且不连续6. 函数在原点( D )。 A. 是驻点 B. 是驻点且为极值点 C. 不是驻点但是极大值点 D. 不是驻点但是极小值点7. 二元函数在处满足关系( B ) A. 可微可导连续 B. 可微可导,可微连续 C. 可微可导连续 D. 可导连续,反之不行.得分二、填空
3、题(每空3分,共27分)1. 点到平面的距离是 .2. 设向量,则与的夹角为.3. 微分方程的特解为.4. 极限.5. 设函数,则.6. 设,其中f为可微函数,则.7. 设,则.8. 曲线在点处的切线方程为;法平面方程为.得分三、计算题(每小题6分,共30分)1. 求微分方程的通解.解:方程是一阶非齐次线性方程,其中,代入公式,则通解2分 4分. 6分2. 设函数,求.解:令,则,从而 4分 6分或 函数变形为,则 2分 5分 6分3. 设函数,且,求解: 4分 6分4. 设函数由方程确定,求,解:令,则,从而 ,则 3分 6分5. 求曲面在点处的切平面与法线方程.解:令,则,于是曲面在点处的
4、法向量 2分从而切平面方程为即 4分而法线方程为 6分得分四、(10分)已知点及直线,求(1) 过点P且与直线l平行的直线点向式方程; (2) 过点P且与直线l垂直的平面方程; (3) 过点P且与直线l垂直相交的直线方程.解:(1) 由题意知,取直线l的方向向量,即2分则过点P且与直线l平行的直线点向式方程为 4分(2) 取直线的方向向量为所求平面的法向量,则由平面的点法式方程得 6分(3) 设直线l与平面的交点坐标为,则交点满足则交点的坐标为, 8分从而由直线的两点式方程得所求直线方程为或者 10分得分五、(12分)求函数的极值.解:解方程组 2分则驻点为. 4分二阶偏导数为,则 7分在点处,,则且,则为极大值。10分在点处,,则,则不是极值。 12分综上所述,函数有极大值.-各类专业好文档,值得你下载,教育,管理,论文,制度,方案手册,应有尽有-