直线与圆、圆与圆位置关系知识点总结、经典例题解析、近年高考题及答案.doc

上传人:sk****8 文档编号:4266755 上传时间:2019-10-09 格式:DOC 页数:11 大小:2.93MB
下载 相关 举报
直线与圆、圆与圆位置关系知识点总结、经典例题解析、近年高考题及答案.doc_第1页
第1页 / 共11页
直线与圆、圆与圆位置关系知识点总结、经典例题解析、近年高考题及答案.doc_第2页
第2页 / 共11页
直线与圆、圆与圆位置关系知识点总结、经典例题解析、近年高考题及答案.doc_第3页
第3页 / 共11页
直线与圆、圆与圆位置关系知识点总结、经典例题解析、近年高考题及答案.doc_第4页
第4页 / 共11页
直线与圆、圆与圆位置关系知识点总结、经典例题解析、近年高考题及答案.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、 中国教育培训领军品牌 直线与圆、圆与圆位置关系【考纲说明】1、能根据给定直线、圆的方程判断直线与圆的位置关系,能根据给定两个圆的方程判断两圆的位置关系。2、能用直线和圆的方程解决一些简单的问题。【知识梳理】一、 直线与圆的位置关系1、 直线与圆的位置关系有三种:相交、相切、相离,判断直线与圆的位置关系常见的有两种方法(1)代数法:把直线方程与圆的方程联立成方程组,消去x或y整理成一元二次方程后,计算判别式直线与圆相交直线与圆有两交点直线与圆相切直线与圆有一交点直线与圆相离直线与圆无交点(2)几何法:利用圆心到直线的距离d和圆的半径r的大小关系:直线与圆相交直线与圆有两交点直线与圆相切直线与圆

2、有一交点直线与圆相离直线与圆无交点2、圆的切线方程若圆的方程为,点P在圆上,则过P点且与圆相切的切线方程为.经过圆上一点P的切线方程为.3、直线与圆相交直线与圆相交时,若l为弦长,d为弦心距,r为半径,则有,即,求弦长或已知弦长求其他量的值时,一般用此公式。二、圆与圆的位置关系1、圆与圆的位置关系可分为五种:外离、外切、相交、内切、内含。2、判断圆与圆的位置关系常用方法(1)几何法:设两圆圆心分别为,半径为,则圆与圆相离有4条公切线圆与圆外切有3条公切线圆与圆相交有2条公切线圆与圆内切有1条公切线圆与圆内含有0条公切线.(2)代数法:方程组有两组不同的实数解两圆相交;有两组相同的实数解两圆相切

3、;无实数解两圆外离或内含。【经典例题】【例1】(2012广东文)在平面直角坐标系中,直线与圆相交于两点,则弦的长等于()ABCD1【答案】B【解析】 圆心到直线的距离为,所以弦的长等于. 【例2】(2012重庆理)对任意的实数k, 直线与圆的位置关系一定是()A相离B相切C相交但直线不过圆心D相交且直线过圆心【答案】C【解析】圆心到直线的距离为,且圆心不在该直线上. 法二:直线恒过定点,而该点在圆内,且圆心不在该直线上,故选C. 【例3】(2012 福建)直线与圆相交于两点,则弦AB的长度等于( ) A B C D1【答案】B【解析】求弦长有两种方法,一、代数法:联立方程组,解得A、B两点的坐

4、标为,所以弦长;二、几何法:根据直线和圆的方程易知,圆心到直线的距离为,又知圆的半径为2,所以弦长.【例4】(2012安徽)若直线与圆有公共点,则实数取值范围是( )A B C D【答案】C【解析】圆的圆心到直线的距离为,则 .【例5】(2012 山东)圆与圆的位置关系为( ) A内切 B相交 C外切 D相离【答案】B【解析】两圆的圆心分别为,半径分别为,两圆的圆心距离为,则,所以两圆相交,选B.【例6】(2012 江西)过直线上点作圆的两条切线,若两条切线的夹角是60,则点的坐标是_ 【答案】【解析】如图:由题意可知,由切线性质可知,在直角三角形中,设点,则,即,整理得,即,所以,即点的坐标

5、为法二:如图:由题意可知,由切线性质可知,在直角三角形中,圆心到直线的距离为,所以垂直于直线, 由,解得,即点P的坐标为。【例7】(2009四川)若与相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是 .【答案】4【解析】由题知,且,又,所以有.【例8】(2011福建)已知直线:.(I)若以点M(2,0)为圆心的圆与直线相切与点P,且点P在y轴上,求该圆的方程;(II)若直线关于x轴对称的直线为,问直线与抛物线C:是否相切?说明理由。【答案】;当=1时,直线与抛物线C相切,当1时,直线与抛物线C不相切.【解析】(I)由题意知(0, ),以点(2,0)为圆心的圆与直线相切与点,=

6、,解得=2,圆的半径=,所求圆的方程为;(II)直线关于轴对称的直线为,:,:,代入得,=,当1时,0,直线与抛物线C相交;当=1时,=0,直线与抛物线C相切;当1时,0,直线与抛物线C相离.综上所述,当=1时,直线与抛物线C相切,当1时,直线与抛物线C不相切.【例9】已知圆,圆,m为何值时,(1)圆与圆相外切;(2)圆与圆内含.【答案】圆与圆外切;当时,圆与圆内含.【解析】对于圆与圆的方程,配方得:;.(1)如果圆与圆外切,则有.(2)如果圆与圆内含,则有,解得,时,圆与圆外切;当时,圆与圆内含.【例10】(2011广东)设圆C与两圆,中的一个内切,另一个外切(1)求C的圆心轨迹L的方程;(

7、2)已知点M(,),F(,0),且P为L上动点求|MP|FP|的最大值及此时点P的坐标【答案】;(,)【解析】(1)两圆的圆心分别为A(,0),B(,0),半径为2,设圆C的半径为r.由题意得|CA|r2,|CB|r2或|CA|r2,|CB|r2,两式相减得|CA|CB|4或|CA|CB|4,即|CA|CB|4.则C的轨迹为双曲线,其中2a4,c,b21圆C的圆心轨迹L的方程为.(2)由(1)知F为双曲线L的一个焦点,如图,连MF并延长交双曲线于一点P,此时|PM|PF|MF|为|PM|FP|的最大值又MF的方程为即代入x24y24并整理得,解得x或x,显然x为点P的横坐标,点P的纵坐标为.即

8、|MP|FP|的最大值为2,此时点P的坐标为(,)【课堂练习】1、(2012 辽宁)将圆平分的直线是()ABCD2(2012重庆)设为直线与圆 的两个交点,则()A1BCD23(2012 陕西)已知圆,是过点的直线,则()A与相交B与相切C与相离 D以上三个选项均有可能4(2012 湖北)过点的直线,将圆形区域分成两部分,使这两部分的面积之差最大,则该直线的方程为( ) A B C D5(2012天津理)设,若直线与圆相切,则的取值范围是( ) A B C D6.(2009辽宁理)已知圆C与直线xy=0 及xy4=0都相切,圆心在直线x+y=0上,则圆C的方程为( ) A. B. C. D.

9、7.(2009重庆理)直线与圆的位置关系为( )A相切 B相交但直线不过圆心 C直线过圆心D相离8.(2006陕西理)过原点且倾斜角为的直线被圆所截得的弦长为( )A. B.2 C. D.2 9(2011江西)如图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点那么,当小圆这样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )10.(2012江苏)在平面直角坐标系中,圆的方程为,若直线上至少存在一点,使得以该点为圆心,1为半径的圆与圆有公共点,则的最大值是 11(2012 浙江)定义:曲线上的点到直线的距离的最小值称为曲线到直线的距离已

10、知曲线C1: 到直线的距离等于曲线C2:x 2(y4) 2 2到直线的距离,则实数_ 12(2012天津文)设, 若直线与轴相交于点,与y轴相交于B,且与圆 相交所得弦的长为2,O为坐标原点,则面积的最小值为 13.(2010宁夏)过点A(4,1)的圆C与直线相切于点B(2,1)则圆C的方程为 14.(2010江苏)在平面直角坐标系xOy中,已知圆上有且仅有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是_15.(2008广东理)经过圆的圆心,且与直线垂直的直线是 16.(2011江苏), , 若 则实数m的取值范围是_17.(2006广东)以点(2,)为圆心且与直线相切的圆的

11、方程是 18(2012 全国大纲)已知抛物线与圆有一个公共点,且在点处两曲线的切线为同一直线.()求; ()设是异于且与及都相切的两条直线,的交点为,求到的距离 19.(2012湖南理)在直角坐标系中,曲线上的点均在圆:外,且对上任意一点, 到直线的距离等于该点与圆上点的距离的最小值.(1)求曲线的方程; (2)设为圆外一点,过作圆的两条切线,分别与曲线相交于点和.证明:当在直线上运动时,四点的纵坐标之积为定值.20.(2008江苏)在平面直角坐标系中,已知圆和圆.(1)若直线过点,且被圆截得的弦长为,求直线的方程; (2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线和,它们分别

12、与圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求所有满足条件的点P的坐标。【课后作业】1.(2011安徽文)若直线3x + y +a = 0过圆的圆心,则a的值为( )A 1 B 1 C 3 D 32.(2010广东)若圆心在x轴上、半径为的圆O位于y轴左侧,且与直线x+2y=0相切,则圆O的方程是( ) A BC D3.(2009重庆)圆心在轴上,半径为1,且过点(1,2)的圆的方程为( )A B CD4.(2009上海)过圆的圆心,作直线分别交x、y正半轴于点A、B,被圆分成四部分(如图),若这四部分图形面积满足则直线AB有( )A 0条 B 1条 C 2条 D 3条5.直

13、线平分圆x2+y2-8x+2y-2=0的周长,则( )A3 B5C3 D56.由直线上的点向圆(x-3)2+(y+2)2=1引切线,则切线长的最小值为( )A. B. C. D.7(2011江西)若曲线:与曲线:有四个不同的交点,则实数m的取值范围是( ) A(,) B(,0)(0,) c, D(,)(,+)8.(2009宁夏)圆:+=1,圆与圆关于直线对称,则圆的方程为( )A.+=1 B.+=1 C.+=1 D.+=19.(2009全国)若直线被两平行线所截得的线段的长为,则的倾斜角可以是 其中正确答案的序号是 (写出所有正确答案的序号)10.(2011湖北文)过点(-1,-2)的直线被圆

14、截得的弦长为,则直线的斜率为 11.(2010天津)已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切。则圆C的方程为 12.(2010山东)已知圆C过点(1,0),且圆心在x轴的正半轴上,直线:被圆C所截得的弦长为,则过圆心且与直线垂直的直线的方程为 13.(2010湖南)若不同两点P,Q的坐标分别为(a,b),(3-b,3-a),则线段PQ的垂直平分线的斜率为 ,圆关于直线对称的圆的方程为 14.光线从点P(3,5)射到直线上,经过反射,其反射光线过点Q(3,5),则光线从P到Q所走过的路程为 15.圆为参数)的标准方程是 ,过这个圆外一点P的该圆的切线方程是

15、16.设直线与圆相交于A、B两点,且弦长为,则a= 17.(天津文)若圆与圆的公共弦长为,则a=_18.(2006江西理)设直线系,对于下列四个命题: 中所有直线均经过一个定点;存在定点不在中的任一条直线上;对于任意整数,存在正边形,其所有边均在中的直线上; 中的直线所能围成的正三角形面积都相等其中真命题的代号是 (写出所有真命题的代号)19(2011全国)在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上(I)求圆C的方程; (II)若圆C与直线交于两点,且求的值 20、(2009宁夏海南)已知圆,圆对称,求圆的方程.【参考答案】【课堂练习】1-9、CDAAD BBDA10、11、12、313、14、15、16、17、18、;19、;(2)当点在直线上运动时,的坐标为,又,则过且与圆相切得直线的斜率存在且不为0,每条切线都与抛物线有两个交点,切线方程为即.于是整理得 设过所作的两条切线的斜率分别为,则是方程的两个实根,故由得 设四点的纵坐标分别为,则是方程的两个实根,所以 同理可得 于是由,三式得所以,当在直线上运动时,四点的纵坐标之积为定值6400.20、或;或【课后作业】1-8、BDABD ABB9、或10、1或11、12、13、-1 ;x2+(y-1)2=114、815、(x1)2(y1)21;x2或3x4y6016、017、118、19、;20、环球雅思 11

展开阅读全文
相关资源
相关搜索
资源标签

当前位置:首页 > 重点行业资料库 > 自然科学

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。