.函数中存在性和任意性问题分类解析全称量词、特称量词以及全称命题和特称命题在近几年新课标高考卷和模拟卷中频频亮相成为高考的热点问题.特别是全称量词”任意”和特称量词”存在”与函数情投意合风火情深,火借风势、风助火威,大有逾演逾烈之势.两种量词插足函数,使得函数问题意深难懂神秘莫测,问题显得更加扑朔迷离难度大增,同时题目也因此显得富有变化和新意.解决这类问题的关键是揭开量词隐含的神秘面纱还函数问题本来面目,本文通过典型题目分类解析供参考.1.,使得,等价于函数在上的值域与函数在上的值域的交集不空,即.例1 已知函数和函数,若存在,使得成立,则实数的取值范围是( )解 设函数与在上的值域分别为与,依题意.当时,则,所以在上单调递增,所以即.当时,所以单调递,所以即.综上所述在上的值域.当时,又,所以在在上单调递增,所以即,故在上的值域.因为,所以或解得,故应选.2.对,使得,等价于函数在上的值域是函数在上的值域的子集,即.例2(2011湖北八校第二次联考)设,.若,使成立,则实数的取值范围为;若,使得,则实数的取值范