.基于构造函数的放缩法证数列型不等式问题的教学设计 教学内容分析证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其内在的函数规律进行恰当地放缩.一、 学生学习情况分析任教的学生在年段属中上程度,学生学习兴趣较高,已经掌握了基本的数列求解问题的技巧,对于构造函数这方法,知道大致思路,但是不明确如何有效合理的构造能帮助解题,计算能力不是太过硬.二、 设计思想建构主义学习理论认为,建构就是认知结构的组建,其过程一般是引导学生从身边的、生活中的实际问题出发,发现问题,思考如何解决问题,进而联系所学的旧知识,首先明确问题的实质,然后总结出新知识的有关概念和规律,形成知识点,把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识