.傅里叶变换及其应用一 傅里叶变换傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫傅里叶系统地提出,所以以其名字来命名以示纪念。傅里叶变换是一种线性的积分变换,在物理学、声学、光学、结构动力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯等领域都有着广泛的应用。傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如快速傅里叶变换和离散傅里叶变换。 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解。在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取。二 计算方法连续傅里叶变换将平方可积的函数f(t)表示成复指数函数的积分或级数形式。这是将频率域的函数F()表示为时间域的函数f(t)的积分形式。可以把傅里叶变换也成另外一种形式:可以看出,傅里叶变换的本质是内积,三角函数是