.建立空间直角坐标系的三条途径引入空间向量坐标运算,使解立体几何问题避免了传统方法进行繁琐的空间分析,只需建立空间直角坐标系进行向量运算,而如何建立恰当的坐标系,成为用向量解题的关键步骤之一下面以高考考题为例,剖析建立空间直角坐标系的三条途径途径一、利用图形中现成的垂直关系建立坐标系当图形中有明显互相垂直且交于一点的三条直线,可以利用这三条直线直接建系2006北京卷文科17题为典型例子途径二、利用图形中的对称关系建立坐标系图形中虽没有明显交于一点的三条直线,但有一定对称关系(如正三棱柱、正四棱柱等),利用自身对称性可建立空间直角坐标系例1已知两个正四棱锥PABCD与QABCD的高都为2,AB4(1)证明:PQ平面ABCD;(2)求异面直线AQ与PB所成的角;(3)求点P到平面QAD的距离简解:(1)略;(2)由题设知,ABCD是正方形,且ACBD由(1),PQ平面ABCD,故可分别以直线为x,y,z轴建立空间直角坐标系(如图1),易得,所求异面直线所成的角是(3)由(2)知,点