.立体几何证明平行的方法及专题训练立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1) 通过“平移”。(2) 利用三角形中位线的性质。(3) 利用平行四边形的性质。(4) 利用对应线段成比例。(5) 利用面面平行的性质,等等。(第1题图)(1) 通过“平移”再利用平行四边形的性质1如图,四棱锥PABCD的底面是平行四边形,点E、F 分 别为棱AB、 PD的中点求证:AF平面PCE;分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形2、如图,已知直角梯形ABCD中,ABCD,ABBC,AB1,BC2,CD1,过A作AECD,垂足为E,G、F分别为AD、CE的中点,现将ADE沿AE折叠,使得DEEC.()求证:BC面CDE; ()求证:FG面BCD;分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形 3、已知直三棱柱ABCA1B1C1中,
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。