一、均值不等式在证明中的应用1. (1)已知,求证:;(2)已知实数 满足:,试利用(1)求的最小值。(1)证:(当且仅当时,取等号);(2)解:,当且仅当时,的最小值是。考点:均值不等式在证明中的应用、综合法证明不等式二、绝对值不等式2. 已知函数若函数恰有个零点,则实数的取值范围为_.答案:解析:分别作出函数与的图像,由图知,时,函数与无交点,时,函数与有三个交点,故当,时,函数与有一个交点,当,时,函数与有两个交点,当时,若与相切,则由得:或(舍),因此当,时,函数与有两个交点,当,时,函数与有三个交点,当,时,函数与有四个交点,所以当且仅当时,函数与恰有个交点.考点:单绝对值不等式3. 存在 ,使得不等式 成立,则实数 的取值范围为_答案:解析:不等式 ,即 ,令 的图象是关于 对称的一个 字形图形,其象位于第一、二象限; ,是一个开口向下,关于 轴对称,最大值为 的抛物线;要存在 ,使不等式 成立,则 的图象
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。