第九章欧氏空间习题一、填空题1设是一个欧氏空间,若对任意,都有,则。2在维欧氏空间中,向量在标准正交基下的坐标是,那么,。3若是一个正交矩阵,则方程组的解为 。4.已知三维欧式空间中有一组基,其度量矩阵为,则向量的长度为。5.设中的内积为,则在此内积之下的度量矩阵为 。6设,若与正交,则 。7若欧氏空间在某组基下的度量矩阵为,某向量在此组基下的坐标为,则它的长度为 ,在此基下向量与向量的夹角为 。8在欧氏空间中,若线性相关,且,则 。9是度量阵,则必须满足条件_。10线性空间在不同基下的过渡阵、线性变换在某组基下的矩阵、欧氏空间的度量阵这三类矩阵中,可以为退化阵的是 。11. 在欧氏空间中,向量,那么=_,=_。12. 两个有限维欧氏空间同构的充要条件是_
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。