球盒问题一、球相同,盒子相同,且盒子不能空 例18个相同的球放入3个相同的盒子中,每个盒子中至少有一个. 问有多少种不同的放法?解析 球入盒问题,可以看成分两步完成,首先是将8个球分成三堆,每堆至少一个. 由于这里球和盒子都相同,每三堆放入3个盒子中只有一种情况,所以只要将8个球分成三堆. 即1-1-6、1-2-5、1-3-4、2-2-4、2-3-3五种,故将8个相同的球放入3个相同的盒子中,每个盒子至少有一个, 有五种不同的放法.结论个相同的球放入个相同的盒子(nm),不能有空盒时的放法种数等于分解为个数的和的种数.二、球相同,盒子相同,且盒子可以空例28个相同的球放入3个相同的盒子中. 问有多少种不同的放法?解析 与上题不同的是分成的三堆中,上题中的每一堆至少有一个球,而这个题中的三堆可以有球数为零的堆,即除了分成上面的五堆外,还可分为1-7、2-6、3-5、4-4和只一堆共五种情况,故8个相同的球放入3个相同的盒子中.,有十种不同的放法.结论个相同的球放入个相同的盒子(nm),可以有空盒时的放法种数等于将