大学生数学竞赛竞赛大纲(初稿).DOC

上传人:天*** 文档编号:691120 上传时间:2018-10-27 格式:DOC 页数:7 大小:92.50KB
下载 相关 举报
大学生数学竞赛竞赛大纲(初稿).DOC_第1页
第1页 / 共7页
大学生数学竞赛竞赛大纲(初稿).DOC_第2页
第2页 / 共7页
大学生数学竞赛竞赛大纲(初稿).DOC_第3页
第3页 / 共7页
大学生数学竞赛竞赛大纲(初稿).DOC_第4页
第4页 / 共7页
大学生数学竞赛竞赛大纲(初稿).DOC_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、 1 中国大学生数学竞赛竞赛大纲(初稿)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数

2、学专业基础课的教学内容,即,数学分析占 50%,高等代数占 35%,解析几何占 15%,具体内容如下:、数学分析部分一、集合与函数1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区A间套定理、聚点定理、有限覆盖定理.2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、 上的2 2A闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在 上的推n广.3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性

3、、不等式性质).2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系) ,极限 及其应用.1lim()nne3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式性质、迫敛性) ,归结原则和 Cauchy 收敛准则,两个重要极限及其应用,计算一元函数极限的各种方法,无穷小量与无穷大sin10l,li()xx量、阶的比较,记号 O 与 o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系.4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性) ,有界闭集上连续函数的性质(有界性、最

4、大值最小值定理、介值定理、一致连续性).三、一元函数微分学1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性.2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 2 公式(Peano 余项与 Lagrange 余项).3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、曲线的凹凸性、拐点、渐近线、函数图象的讨论、洛必达(LHospital)法则、近似计算.四、多元函数微分学1. 偏导数、全微分及其几何意义,可微与偏导存在、连续之间的关系,复合

5、函数的偏导数与全微分,一阶微分形式不变性,方向导数与梯度,高阶偏导数,混合偏导数与顺序无关性,二元函数中值定理与 Taylor 公式.2.隐函数存在定理、隐函数组存在定理、隐函数(组)求导方法、反函数组与坐标变换.3.几何应用(平面曲线的切线与法线、空间曲线的切线与法平面、曲面的切平面与法线).4.极值问题(必要条件与充分条件) ,条件极值与 Lagrange 乘数法.五、一元函数积分学1. 原函数与不定积分、不定积分的基本计算方法(直接积分法、换元法、分部积分法)、有理函数积分: 型, 型.(cos,in)Rxd 2(,)Rxabcdx2. 定积分及其几何意义、可积条件(必要条件、充要条件:

6、 ) 、可积函i数类.3. 定积分的性质(关于区间可加性、不等式性质、绝对可积性、定积分第一中值定理)、变上限积分函数、微积分基本定理、N-L 公式及定积分计算、定积分第二中值定理.4.无限区间上的广义积分、Canchy 收敛准则、绝对收敛与条件收敛、 非负时()fx的收敛性判别法(比较原则、柯西判别法) 、Abel 判别法、Dirichlet 判别法、()afxd无界函数广义积分概念及其收敛性判别法.5. 微元法、几何应用(平面图形面积、已知截面面积函数的体积、曲线弧长与弧微分、旋转体体积) ,其他应用.六、多元函数积分学1.二重积分及其几何意义、二重积分的计算(化为累次积分、极坐标变换、一

7、般坐标变换).2.三重积分、三重积分计算(化为累次积分、柱坐标、球坐标变换).3.重积分的应用(体积、曲面面积、重心、转动惯量等).4.含参量正常积分及其连续性、可微性、可积性,运算顺序的可交换性.含参量广义积分的一致收敛性及其判别法,含参量广义积分的连续性、可微性、可积性,运算顺序的可交换性.5.第一型曲线积分、曲面积分的概念、基本性质、计算.6.第二型曲线积分概念、性质、计算;Green 公式,平面曲线积分与路径无关的条件.7.曲面的侧、第二型曲面积分的概念、性质、计算,奥高公式、Stoke 公式,两类线积分、两类面积分之间的关系.七、无穷级数1. 数项级数级数及其敛散性,级数的和,Cau

8、chy 准则,收敛的必要条件,收敛级数基本性质;正项级数收敛的充分必要条件,比较原则、比式判别法、根式判别法以及它们的极限形式;交错级数的 Leibniz 判别法;一般项级数的绝对收敛、条件收敛性、Abel 判别法、Dirichlet 3 判别法.2. 函数项级数函数列与函数项级数的一致收敛性、Cauchy 准则、一致收敛性判别法(M-判别法、Abel 判别法、 Dirichlet 判别法) 、一致收敛函数列、函数项级数的性质及其应用.3.幂级数幂级数概念、Abel 定理、收敛半径与区间,幂级数的一致收敛性,幂级数的逐项可积性、可微性及其应用,幂级数各项系数与其和函数的关系、函数的幂级数展开、

9、Taylor 级数、Maclaurin 级数.4.Fourier 级数三角级数、三角函数系的正交性、2 及 2 周期函数的 Fourier 级数展开、 Beseel 不等l式、Riemanm-Lebesgue 定理、按段光滑函数的 Fourier 级数的收敛性定理.、高等代数部分一、 多项式1. 数域与一元多项式的概念2. 多项式整除、带余除法、最大公因式、辗转相除法3. 互素、不可约多项式、重因式与重根.4. 多项式函数、余数定理、多项式的根及性质.5. 代数基本定理、复系数与实系数多项式的因式分解.6. 本原多项式、Gauss 引理、有理系数多项式的因式分解 、Eisenstein 判别法

10、、有理数域上多项式的有理根.7. 多元多项式及对称多项式、韦达(Vieta)定理.二、 行列式1. n 级行列式的定义.2. n 级行列式的性质.3. 行列式的计算.4. 行列式按一行(列)展开.5. 拉普拉斯(Laplace)展开定理 .6. 克拉默(Cramer)法则.三、 线性方程组1. 高斯(Gauss)消元法、线性方程组的初等变换、线性方程组的一般解 .2. n 维向量的运算与向量组.3. 向量的线性组合、线性相关与线性无关、两个向量组的等价.4. 向量组的极大无关组、向量组的秩.5. 矩阵的行秩、列秩、秩、矩阵的秩与其子式的关系.6. 线性方程组有解判别定理、线性方程组解的结构.7

11、. 齐次线性方程组的基础解系、解空间及其维数四、 矩阵1. 矩阵的概念、矩阵的运算(加法、数乘、乘法、转置等运算)及其运算律.2. 矩阵乘积的行列式、矩阵乘积的秩与其因子的秩的关系.3. 矩阵的逆、伴随矩阵、矩阵可逆的条件. 4 4. 分块矩阵及其运算与性质.5. 初等矩阵、初等变换、矩阵的等价标准形.6. 分块初等矩阵、分块初等变换.五、 双线性函数与二次型1. 双线性函数、对偶空间2. 二次型及其矩阵表示.3. 二次型的标准形、化二次型为标准形的配方法、初等变换法、正交变换法.4. 复数域和实数域上二次型的规范形的唯一性、惯性定理.5. 正定、半正定、负定二次型及正定、半正定矩阵六、 线性

12、空间1. 线性空间的定义与简单性质.2. 维数,基与坐标.3. 基变换与坐标变换.4. 线性子空间.5. 子空间的交与和、维数公式、子空间的直和.七、 线性变换1. 线性变换的定义、线性变换的运算、线性变换的矩阵.2. 特征值与特征向量、可对角化的线性变换.3. 相似矩阵、相似不变量、哈密尔顿-凯莱定理.4. 线性变换的值域与核、不变子空间.八、若当标准形1. 矩阵.2. 行列式因子、不变因子、初等因子、矩阵相似的条件.3. 若当标准形.九、 欧氏空间1. 内积和欧氏空间、向量的长度、夹角与正交、度量矩阵.2. 标准正交基、正交矩阵、施密特(Schmidt)正交化方法.3. 欧氏空间的同构.4

13、. 正交变换、子空间的正交补.5. 对称变换、实对称矩阵的标准形.6. 主轴定理、用正交变换化实二次型或实对称矩阵为标准形.7. 酉空间.、解析几何部分一、向量与坐标1. 向量的定义、表示、向量的线性运算、向量的分解、几何运算.2. 坐标系的概念、向量与点的坐标及向量的代数运算.3. 向量在轴上的射影及其性质、方向余弦、向量的夹角.4. 向量的数量积、向量积和混合积的 定 义 、 几 何 意 义 、 运 算 性 质 、 计 算 方 法 及 应 用 .5. 应用向量求解一些几何、三角问题.二、轨迹与方程 5 1.曲 面 方 程 的 定 义 : 普 通 方 程 、 参 数 方 程 (向 量 式 与

14、 坐 标 式 之 间 的 互 化 )及 其 关系 .2.空 间 曲 线 方 程 的 普 通 形 式 和 参 数 方 程 形 式 及 其 关 系 .3.建 立 空 间 曲 面 和 曲 线 方 程 的 一 般 方 法 、 应 用 向 量 建 立 简 单 曲 面 、 曲 线 的 方 程 .4.球 面 的 标 准 方 程 和 一 般 方 程 、 母 线 平 行 于 坐 标 轴 的 柱 面 方 程 .三、平面与空间直线1.平 面 方 程 、 直 线 方 程 的 各 种 形 式 , 方 程 中 各 有 关 字 母 的 意 义 .2.从 决 定 平 面 和 直 线 的 几 何 条 件 出 发 , 选 用 适

15、 当 方 法 建 立 平 面 、 直 线 方 程 .3.根 据 平 面 和 直 线 的 方 程 , 判 定 平 面 与 平 面 、 直 线 与 直 线 、 平 面 与 直 线 间 的 位 置关 系 .4. 根据平面和直线的方程及点的坐标判定有关点、平面、直线之间的位置关系、计算他们之间的距离与交角等;求两异面直线的公垂线方程. 四、二次曲面1.柱 面 、 锥 面 、 旋 转 曲 面 的 定 义 , 求 柱 面 、 锥 面 、 旋 转 曲 面 的 方 程 .2.椭 球 面 、 双 曲 面 与 抛 物 面 的 标 准 方 程 和 主 要 性 质 , 根 据 不 同 条 件 建 立 二 次 曲 面的

16、 标 准 方 程 .3.单 叶 双 曲 面 、 双 曲 抛 物 面 的 直 纹 性 及 求 单 叶 双 曲 面 、 双 曲 抛 物 面 的 直 母 线 的 方法 .4.根 据 给 定 直 线 族 求 出 它 表 示 的 直 纹 面 方 程 , 求 动 直 线 和 动 曲 线 的 轨 迹 问 题 .五 、 二 次 曲 线 的 一 般 理 论1.二 次 曲 线 的 渐 进 方 向 、 中 心 、 渐 近 线 .2.二 次 曲 线 的 切 线 、 二 次 曲 线 的 正 常 点 与 奇 异 点 .3.二 次 曲 线 的 直 径 、 共 轭 方 向 与 共 轭 直 径 .4.二 次 曲 线 的 主 轴

17、 、 主 方 向 , 特 征 方 程 、 特 征 根 .5.化 简 二 次 曲 线 方 程 并 画 出 曲 线 在 坐 标 系 的 位 置 草 图 .(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1 函数的概念及表示法、简单应用问题的函数关系的建立.2 函数的性质:有界性、单调性、周期性和奇偶性.3 复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4 数列极限与函数极限的定义及其性质、函数的左极限与右极限.5 无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6 极限的四则运算、极

18、限存在的单调有界准则和夹逼准则、两个重要极限.7 函数的连续性(含左连续与右连续) 、函数间断点的类型.8 连续函数的性质和初等函数的连续性.9 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关 6 系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的 n 阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中

19、值定理和泰勒定理.6. 洛必达(LHospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1. 原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz )公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:

20、平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程: ),()n(xfy.),(yxf ),(yf4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正

21、弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler)方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形. 7 7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影

22、曲线方程.六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学 1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2. 两类曲线积分的概念、

23、性质及计算、两类曲线积分的关系.3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2. 几何级数与 p 级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3. 任意项级数的绝对收敛与条件收敛.4. 函数项级数的收敛域与和函数的概念.5. 幂级数及其收敛半径、收敛区间(指开区间) 、收敛域与和函数.6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7. 初等函数的幂级数展开式.8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在-l,l上的傅里叶级数、函数在0,l上的正弦级数和余弦级数

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 重点行业资料库 > 1

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。