用均值(基本)不等式求最值的类型及方法均值不等式是不等式一章重要内容,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。要求能熟练地运用均值不等式求解一些函数的最值问题。一、几个重要的均值不等式当且仅当a = b时,“=”号成立;当且仅当a = b时,“=”号成立;当且仅当a = b = c时,“=”号成立; ,当且仅当a = b = c时,“=”号成立.注: 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; 熟悉一个重要的不等式链:。二、函数图象及性质(1)函数图象如图:(2)函数性质:值域:;单调递增区间:,;单调递减区间:,.三、用均值不等式求最值的常见类型类型:求几个正数和的最小值。例1、求函数的最小值。解析:,当且仅当即时,“=”号成立,故此函数最小值是。评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。类型:求几个正数积的最大值。例2、求下列函数的最