精选优质文档-倾情为你奉上上海高二数学解析几何经典例题 专心-专注-专业轨迹方程1、已知反比例函数的图像是以轴与轴为渐近线的等轴双曲线(1)求双曲线的顶点坐标与焦点坐标;(2)设、为双曲线的两个顶点,点、是双曲线上不同的两个动点求直线与交点的轨迹的方程;(3)设直线过点,且与双曲线交于、两点,与轴交于点当,且时,求点的坐标面积2、在平面直角坐标系内,动点到定点的距离与到定直线的距离之比为(1)求动点的轨迹的方程;(2)若轨迹上的动点到定点()的距离的最小值为,求的值(3)设点、是轨迹上两个动点,直线、与轨迹的另一交点分别为、,且直线、的斜率之积等于,问四边形的面积是否为定值?请说明理由定点3、动点与点的距离和它到直线的距离相等,记点的轨迹为曲线(1) 求曲线的方程;(2) 设点2,动点在曲线上运动时,的最短距离为,求的值以及取到最小值时点的坐标;(3) 设为曲线的任意两点,满足(为原点),试问直线是否恒过一个定点?如果是,求出定点坐标;如果不是,说明理由