二次函数的图像和性质专项练习题.doc

上传人:h**** 文档编号:794008 上传时间:2018-11-01 格式:DOC 页数:4 大小:162.50KB
下载 相关 举报
二次函数的图像和性质专项练习题.doc_第1页
第1页 / 共4页
二次函数的图像和性质专项练习题.doc_第2页
第2页 / 共4页
二次函数的图像和性质专项练习题.doc_第3页
第3页 / 共4页
二次函数的图像和性质专项练习题.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、xy0二次函数的图像和性质周末练习题一、选择题1、下列函数是二次函数的有( ) .;)3(;2; 222 cbxayDxxyCxyBxyA :2. y=(x1) 22 的对称轴是直线( )Ax=1 Bx=1 Cy=1 Dy=13. 抛物线 的顶点坐标是( )12xyA (2,1) B (-2,1) C (2,-1) D (-2,-1)4. 函数 y=-x2-4x+3 图象顶点坐标是( )A.(2,-1) B.(-2,1) C.(-2,-1) D.(2, 1)5、二次函数 的图象如图所示,则下列结论中正确的是:( )cbxay2A a0 b0 b2-4ac0 b2-4ac0C a0 c0 D a

2、0 c0 b2-4ac0 6已知二次函数 的图象经过原点,则 的值为 ( ))2(mxy mA 0 或 2 B 0 C 2 D无法确定7正比例函数 ykx 的图象经过二、四象限,则抛物线 ykx 22xk 2的大致图象是( )8、若 A(-4,y 1) ,B(-3,y 2) ,C(1,y 3)为二次函数 y=x2+4x-5 的图象上的三点,则y1,y 2,y 3的大小关系是( )A、y 1y 2y 3 B、y 2y 1y 3 C、y 3y 1y 2 D、y 1y 3y 29抛物线 x向右平移 1 个单位,再向下平移 2 个单位,所得到的抛物线是( ) 2() 2()x C 2x D 31yx1

3、0.二次函数 的图像如图所示,则 , , ,cbay2 abc42ba这四个式子中,值为正数的有( )cbaO xy-1 1(A)4 个 (B)3 个 (C)2 个 (D)1 个11在同一坐标系中,函数 和 ( 是常数,且 )的ymx2yxm0图象可能是( )12. 若二次函数 ,当 x 取 , ( )时,函数值相等,则当 x 取 +时,函数值为( )(A)a+c (B)a-c (C)-c (D)c13.抛物线 的部分图象如图所示,若 ,则的取bxy2 0y值范围是( ) A. B. 1413xC. 或 D. 或x14.已知关于 x 的方程 的一个根为 =2,且二次函数32ca1的对称轴直线是

4、 x=2,则抛物线的顶点坐标是( )cbay2A(2,3 ) B(2,1) C(2,3) D(3,2)15.已知抛物线 2(1)(0)yaxh与 轴交于 1(0)(3AxB, , , 两点,则线段 AB的长度为( ) 3 4二、填空题:1、抛物线 可以通过将抛物线 y 向左平移_ _ 个单位、再向 21()43yx231x平移 个单位得到。2若抛物线 yx 2bx9 的顶点在 x 轴上,则 b 的值为_3.若 是二次函数, m=_。m4、已知 y=x2+x6,当 x=0 时,y= ;当 y=0 时,x= 。5、抛物线 42)(xy的图象经过原点,则 m .6、若抛物线 yx 2+mx9 的对称

5、轴是直线 x=4,则 m 的值为 。7、 若一抛物线形状与 y5x 22 相同,顶点坐标是(4,2),则其解析式是_.8.已知二次函数 的图象如图所示,则点 在第 象2abxc()Pabc,限xy Oxy Oxy Oxy O-1 Ox=1yxyxO BAy1 13O x9如图,铅球运动员掷铅球的高度 y(m)与水平距离 x(m)之间的函数关系式是 y= x2+1x+ , 则该运动员此次掷铅球,铅球出手时的高度为 32510.已知抛物线 ,如果 y 随 x 的增大而减小,那么 x 的取值范围是 x4y211.若二次函数 y(m+5)x 2+2(m+1)x+m 的图象全部在 x 轴的上方,则 m

6、的取值范围是 12.如果二次函数 yx 24xc 图象与 x 轴没有交点,其中 c 为整数,则 c (写一个即可)三、解答题:1. (1)已知二次函数的图象以 A(1,4)为顶点,且过点 B(2,5)求该函数的关系式;求该函数图象与坐标轴的交点坐标;(2)抛物线过(1,0) , (3,0) , (1,5)三点,求二次函数的解析式;(3)若抛物线与 x 轴交于(2,0)、 (3,0) ,与 y 轴交于(0,4),求二次函数的解析式。2. 把二次函数 y=3x2-6x+9 配成顶点式,并写出开口方向、对称轴、顶点坐标并确定函数的最大(小)值。3. 已知函数 +8x-1 是关于 x 的二次函数,求:

7、42mxy(1) 求满足条件的 m 的值;(2) m 为何值时,抛物线有最低点?最低点坐标是多少?当 x 为何值时,y 随 x 的增大而增大?(3) m 为何值时,抛物线有最大值?最大值是多少?当 x 为何值时,y 随 x 的增大而减小?4抛物线 与 x 轴交点为 A,B, (A 在 B 左侧)顶点为 C.与 Y 轴交于点 D562xy(1)求ABC 的面积。(2)若在抛物线上有一点 M,使ABM 的面积是ABC 的面积的倍,求 M 点坐标。5.抛物线 y= (k22)x 2+m4kx 的对称轴是直线 x=2,且它的最低点在直线 y= x+2 上,12求函数解析式。6.某水果批发商销售每箱进价为 40 元的苹果,物价部门规定每箱售价不得高于 55 元,市场调查发现,若每箱以 50 元的价格调查,平均每天销售 90 箱,价格每提高 1 元,平均每天少销售 3 箱 (1)求平均每天销售量 y(箱)与销售价 x(元/箱)之间的函数关系式(2)求该批发商平均每天的销售利润 w(元)与销售价 (元/箱)之间的函数关系式(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 参考答案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。