精选优质文档-倾情为你奉上直线与平面垂直的判定 教学设计一、内容和内容解析 直线与平面垂直的定义:如果直线与平面内的任意一条直线都垂直,就称直线与平面互相垂直。定义中的“任意一条直线”就是“所有直线”。直线与平面垂直的判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。定理体现了转化的数学思想:将“直线与平面垂直”的问题转化为“直线与直线垂直”的问题。直线与平面垂直是直线和平面相交中的一种特殊情况,它是空间中线线垂直位置关系的拓展,又是面面垂直的基础,是空间中垂直位置关系间转化的重心,同时它又是直线和平面所成的角等内容的基础,因而它是点、直线、平面间位置关系中的核心概念之一。对直线与平面垂直的定义的研究遵循“直观感知、抽象概括”的认知过程展开,而对直线与平面垂直的判定的研究则遵循“直观感知、操作确认、归纳总结、初步运用”的认知过程展开,通过该内容的学习,能进一步培养学生空间想象能力,发展学生的合情推理能力和一定的推理论证能力,同时体会“平面化”思想和“降维”思想。重点:直观感知、操作确认,概括出直线与平面垂直的定义和判定定理