精选优质文档-倾情为你奉上2016年上期高中部说题比赛说题稿(数学组.谭丹风)本题选自(2014年高考,全国1卷理科21,满分12分)设函数,曲线在点(1,f(1))处的切线为方程为(1)求(2)证明:一、选题理由 2016年,湖南高考将采用全国卷,那么函数综合试题是高考的必考题型,满分12分,并且是高考解答题的压轴题。总体来讲,本题对能力要求较高,有明显的区分度。但本题的起点并不高,低层次考生都能动笔做,只要掌握函数曲线的切线基本求法,就能得到2-5分;它很好地贯彻了考纲的要求,堪称完美。二、学情分析 部分学生觉得这是高考的压轴题,肯定比较难,怕时间不够,也有少部分学生觉得第2问无从下手。主要失分原因有以下五点:1.忽略求函数的定义域.如,的定义域为;2.求导公式和求导法则记得不牢,如, 的导函数的求解出错;3.曲线切线方程的斜率的求法理解不清.如,在点(1,f(1))处的切线的斜率应为;4.方法掌握不牢.如,在证明时,我们要采用构造函数的方法,往往学生不会构造出便于求导的新函数;5.导数在函数性质中的应