分数小数混合运算练习题.doc

上传人:h**** 文档编号:890829 上传时间:2018-11-05 格式:DOC 页数:20 大小:367.51KB
下载 相关 举报
分数小数混合运算练习题.doc_第1页
第1页 / 共20页
分数小数混合运算练习题.doc_第2页
第2页 / 共20页
分数小数混合运算练习题.doc_第3页
第3页 / 共20页
分数小数混合运算练习题.doc_第4页
第4页 / 共20页
分数小数混合运算练习题.doc_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、1实数实数 有理数和无理数统称为实数。实数 数0负 分 数正 分 数分 数 负 分 数正 整 数整 数数(还有其它的分类方法)实数与数轴上的点是一一对应的关系。无限不循环小数叫做无理数,如 等。,32有理数包括:(1)自然数:数 0,1,2,3,叫做自然数.(2)正整数:1,2,3,叫做正整数。(3)负整数:1,2,3,叫做负整数。(4)整数:正整数、0、负整数统称为整数。(5)分数:正分数、负分数统称为分数。(6)奇数:不能被 2 整除的整数叫做奇数。如-3,-1,1,5 等。所有的奇数都可用 2n-1 或 2n+1 表示,n 为整数。(7)偶数:能被 2 整除的整数叫做偶数。如-2,0,4

2、,8 等。所有的偶数都可用 2n 表示,n 为整数。(8)质数:如果一个大于 1 的整数,除了 1 和它本身外,没有其他因数,这个数就称为质数,又称素数,如 2,3,11,13 等。2 是最小的质数。(9)合数:如果一个大于 1 的整数,除了 1 和它本身外,还有其他因数,这个数就称为合数,如 4,6,9,15 等。4 是最小的合数。一个合数至少有 3 个因数。(10)互质数:如果两个正整数,除了 1 以外没有其他公因数,这两个整数称为互质数,如 2 和 5,7 和 13 等。有理数运算法则加法定律1.同号相加,取相同符号,并把绝对值相加.2.绝对值不相等的异号两数加减,取绝对值较大的符号,并

3、用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得 0.3.一个数同 0 相加,仍得这个数.4.相反数相加结果一定得 0。交换律和结合律2有理数的加法同样拥有交换律和结合律(和整数得交换律和结合律一样)用字母表示为:交换律:a+b=b+a结合律:a+b+c=(a+b)+c=a+(b+c)运算要点:同号相加不变,异号相加变减.欲问符号怎么定,绝对值大号选。在进行有理数加法运算时,一般采取:1.是互为相反数的先加(抵消) ;2.同号的先加;3.同分母的先加;4.能凑整数的先加;5.异分母分数相加,先通分,再计算。有理数减法法则:减去一个数,等于加上这个数的相反数。其中:两变:减法运算变加法运

4、算,减数变成它的相反数。一不变:被减数不变。可以表示成: aba(b) 。乘法运算法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘。(2)任何数字同 0 相乘,都得 0。(3)几个不等于 0 的数字相乘,积的符号由负因数的个数决定。当负因数有奇数个数时,积为负;当负因数有偶数个数时,积为正。(4)几个数相乘,有一个因数为 0 时,积为 0.除法运算法则:(1)除以一个数等于乘以这个数的倒数。(注意:0 没有倒数)(2)两数相除,同号为正,异号为负,并把绝对值相除。(3)0 除以任何一个不等于 0 的数,都等于 0。(4)0 在任何条件下都不能做除数。实数的混合运算 顺序与有理数运算顺序

5、基本相同,先乘方、开方,在乘除,最后算加减,同级运算按从左到右的顺序进行,右括号先算括号里的。相反数 只有符号不同的两个数叫做互为相反数。正 数 的 相 反 数 是 负 数 , 负 数 的 相 反 数 是 正 数 。 0 的 相 反 数 是 0。绝 对 值 数 轴 上 一 个 数 所 对 应 的 点 与 原 点 的 距 离 叫 做 该 数 绝 对 值 。 绝 对 值 只 能 为 非 负数 。 正 数 和 0 的 绝 对 值 是 它 本 身 , 负 数 的 绝 对 值 是 它 的 相 反 数 ,0 的 绝 对 值 是 0 互 为 相 反 数 的 两 个 数 的 绝 对 值 相 等 加 法 的 交

6、 换 律 a+b=b+a; 加 法 的 结 合 律 a+(b+c)=(a+b)+c; 存 在 数 0, 使 0+a=a+0=a; 乘 法 的 交 换 律 ab=ba; 乘 法 的 结 合 律 a(bc)=(ab)c; 乘 法 的 分 配 律 a(b+c)=ab+ac。 0a 0 文 字 解 释 : 一 个 数 乘 0 还 等 于 0。3乘方 求 n 个相同因数乘20. 15 15 15 1521. 1 (3 2 ) 22. 211 911 15 3455(23 )(4 3 )15 516 815 2523. 1 (1 1 ) 24. 718 3447 715153 (1 )1524 38 79

7、 12 5925. (1 6 2 3 ) 26. 23 58 13 38 9149( )241112 18 3527. 1 1 1 3 28. 1929 25 47 7202 13.83 3.512 4529. (1 5 )11 30. 8131342 57 821 584(8.256 )(2 4.2)7 415 13二次根式的运算知识点及经典试题知识点一:二次根式的乘法法则: ( , ) ,即两个二次根式相乘,ab0b根指数不变,只把被开方数相乘.要点诠释:(1)在运用二次根式的乘法法则进行运算时,一定要注意:公式中 a、b 都必须是非负数; (2)该法则可以推广到多个二次根式相乘的运算:(

8、3)若二次根式相乘的结果能化简必须化简,如 .416知识点二、积的算术平方根的性质: ( , ) ,即积的算术平方根ba0b等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b 可以是数,也可以是代数式,无论是数,还是代数式,都必须满足 , 才能用此式进行计算或化简,如果不满足这个条件,等式右边就0没有意义,等式也就不能成立了;(2) 二次根式的化简关键是将被开方数分解因数,把含有 形式的 移到根号外面.2a(3)作用:积的算术平方根的性质对二次根式化简(4)步骤:对被开方数分解因数或分解因式,结果写成平方因式乘以非平方因式即: 2利用积的算术平方根的性质 ( , ) ;ba0

9、b利用 (一个数的平方的算术平方根等于这个)0(2aa数的绝对值)即被开方数中的一些因式移到根号外;(5)被开方数是整数或整式可用积的算术平方根的性质对二次根式化简知识点三、二次根式的除法法则: ( , ) ,即两个二次根式相除,根指数ba05不变,把被开方数相除.要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数 a、b 的取值范围应特别注意,其中 , ,因为 b 在分母上,故 b 不能为 0.0a(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.知识点四、商的算术平方根的性质 ( , ) ,即商的算术平方根等于被ba0除

10、式的算术平方根除以除式的算术平方根.要点诠释:(1)利用:运用次性质也可以进行二次根式的化简,运用时仍要注意符号问题. 对于公式中被开方数 a、b 的取值范围应特别注意,其中 , ,因为 b0a在分母上,故 b 不能为 0.(2)步骤:利用 商的算术平方根的性质: ( , ) b 分别对 , 利用积的算术平方根的性质化简a b分母不能有根号,如果分母有根号要分母有理化,即( )a2)(0(3) 被开方数是分数或分式可用商的算术平方根的性质对二次根式化简知识点五:最简二次根式1.定义:当二次根式满足以下两条:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把符合这两个条件的二

11、次根式,叫做最简二次根式.在二次根式的运算中,最后的结果必须化为最简二次根式或有理式. 要点诠释:(1)最简二次根式中被开方数不含分母;(2)最简二次根式被开方数中每一个因数或因式的次数都小于根指数 2,即每个因数或因式从次数只能为 1 次.2.把二次根式化成最简二次根式的一般步骤:(1)把根号下的带分数或绝对值大于 1 的数化成假分数,把绝对值小于 1 的小数化成分数;(2)被开方数是多项式的要进行因式分解; (3)使被开方数不含分母;(4)将被开方数中能开得尽方的因数或因式,用它们的算术平方根代替后移到根号外;(5)化去分母中的根号; (6)约分.3.把一个二次根式化简,应根据被开方数的不

12、同形式,采取不同的变形方法.实际上只是做两件事:一是化去被开方数中的分母或小数;二是使被开方数中不含能开得尽方的因数或因式.6知识点六、同类二次根式1.定义:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式就叫做同类二次根式.要点诠释:(1)判断几个二次根式是否是同类二次根式,必须先将二次根式化成最简二次根式,再看被开方数是否相同;(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关.2.合并同类二次根式合并同类二次根式,只把系数相加减,根指数和被开方数不变.(合并同类二次根式的方法与整式加减运算中的合并同类项类似) 要点诠释:(1)根号外面

13、的因式就是这个根式的系数; (2)二次根式的系数是带分数的要变成假分数的形式;(3)不是同类二次根式,不能合并知识点七、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.二次根式加减运算的步骤:(1)将每个二次根式都化简成为最简二次根式;(2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;(3)合并同类二次根式.知识点八、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运

14、算法则的综合运用.要点诠释: (1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(1) (2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果应写成最简形式,这个形式应是最简二次根式,或几个非同类最简二次 式之和或差,或是有理 式.规律方法指导二次根式的运算,主要研究二次根式的乘除和加减.(1)二次根式的乘除,只需将被开方数进行乘除,其依据是:; ;(2)二次根式的加减类似于整式的加减,关键是合并同类二次根式.通常应先将二次根式化简,再把同类二次根式合并.二次根式运算的结果应尽可能化简.71.

15、 (2) 50328 48512739(3) 14(4) (5) 23 20)1(82)73(4(6) (7)1006)2()1( )232(8) (9) 02 )36(18)( 326(10) (11) 437 2)13((12) 2)5(1((14) (15) 75.01.48 125.092.(16) (17) 2508 37(18) (19))(1 2)1((20) (21)89234030)()3((22) (23)5.421618833322719105(24) ( 25) 54 3121(26) (27)1203 48(28) (29)32509 2)31(30、 ; 31、)(

16、61 632、 33、 :)02(35 zyx101034、 ; 35、 ; 204 142508.36、 ; 5213137、 38、 94815739、 10540、 41、 .24261042、 17843、 44、 45、25327531946、 47、 1315822 12754827一元二次方程知识点教 学 重 点 : 根 的 判 别 式 定 理 及 逆 定 理 的 正 确 理 解 和 运 用 教 学 难 点 : 根 的 判 别 式 定 理 及 逆 定 理 的 运 用 。 教 学 关 键 : 对 根 的 判 别 式 定 理 及 其 逆 定 理 使 用 条 件 的 透 彻 理 解 。

17、主要知识点:一、一元二次方程 1、一元二次方程:含有一个未知数,并且未知数的最高次数是 2 的整式方程叫做一元二次方程。2、一元二次方程的一般形式: ,它的特征是:等式左边)0(2acbxa加一个关于未知数 x 的二次多项式,等式右边是零,其中 叫做二次项,a 叫2x做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。二、一元二次方程的解法 1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如 的一元二次方程。根据平方根的定义bax2)(可知, 是 b 的平方根,当 时, , ,当 b0 时,一元二次方程有 2 个不相等

18、的实数根;II 当=0 时,一元二次方程有 2 个相同的实数根;III 当0 时,一元二次方程没有实数根四、一元二次方程根与系数的关系 如果方程 的两个实数根是 ,那么 ,)0(2acbxa 21x, abx21。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于cx21方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。五、一 般 解 一 元 二 次 方 程 , 最 常 用 的 方 法 还 是 因 式 分 解 法 , 在 应 用 因 式 分 解法 时 , 一 般 要 先 将 方 程 写 成 一 般 形 式 , 同 时 应 使 二 次 项 系 数

19、化 为 正 数 。 直 接 开 平 方 法 是 最 基 本 的 方 法 。 公 式 法 和 配 方 法 是 最 重 要 的 方 法 。 公 式 法 适 用 于 任 何 一 元 二 次 方 程 ( 有人 称 之 为 万 能 法 ) , 在 使 用 公 式 法 时 , 一 定 要 把 原 方 程 化 成 一 般 形 式 , 以 便确 定 系 数 , 而 且 在 用 公 式 前 应 先 计 算 根 的 判 别 式 的 值 , 以 便 判 断 方 程 是 否 有解 。 配 方 法 是 推 导 公 式 的 工 具 , 掌 握 公 式 法 后 就 可 以 直 接 用 公 式 法 解 一 元 二次 方 程 了 , 所 以 一 般 不 用 配 方 法 解 一 元 二 次 方 程 。 但 是 , 配 方 法 在 学 习 其 他数 学 知 识 时 有 广 泛 的 应 用 , 是 初 中 要 求 掌 握 的 三 种 重 要 的 数 学 方 法 之 一 ,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育教学资料库 > 参考答案

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。