1、1余弦定理教学设计宝泉岭高级中学 李鹏 一、教材依据:人民教育出版社(A 版)数学必修 5 第一章 第二节二、设计思想:1、教材分析:余弦定理是初中 “勾股定理”内容的直接延拓,是解三角形这一章知识的一个重要定理,揭示了任意三角形边角之间的关系,是解三角形的重要工具,余弦定理与平面几何知识、向量、三角形有着密切的联系。因此,做好“余弦定理 ”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。2、学情分析:这节课是在学生已经学习了正弦定理及有关知识的基础上,转入对余弦定理的学习,此时
2、学生已经熟悉了探索新知识的数学教学过程,具备了一定的分析能力。3、设计理念:由于余弦定理有较强的实践性,所以在设计本节课时,创设了一些数学情景,让学生从已有的几何知识出发,自己去分析、探索和证明。激发学生浓厚的学习兴趣,提高学生的创新思维能力。4、教学指导思想:根据当前学生的学习实际和本节课的内容特点,我采用的是“问题教学法” ,精心设计教学内容,提出探究性问题,经过启发、引导,从不同的途径让学生自己去分析、探索,从而找到解决问题的方法。1三、教学目标:1、知识与技能:理解并掌握余弦定理的内容,会用向量法证明余弦定理,能用余弦定理解决一些简单的三角度量问题2过程与方法:通过实例,体会余弦定理的
3、内容,经历并体验使用余弦定理求解三角形的过程与方法,发展用数学工具解答现实生活问题的能力。3情感、态度与价值观:探索利用直观图形理解抽象概念,体会“数形结合”的思想。通过余弦定理的应用,感受余弦定理在解决现实生活问题中的意义。四、教学重点:通过对三角形边角关系的探索,证明余弦定理及其推论,并能应用它们解三角形及求解有关问题。五、教学难点:余弦定理的灵活应用六、教学流程:(一)创设情境,课题导入:1、复习:已知 A= ,C= ,b=16 解三角形。 (可以让学生板练 )030452、若将条件 C= 改成 c=8 如何解三角形?0设计意图:把研究余弦定理的问题和平面几何中三角形全1等判定的方法建立
4、联系,沟通新旧知识的联系,引导学生体会量化的思想和观点。师生活动:用数学符号来表达“已知三角形的两边及其夹角解三角形”:已知ABC,BC=a,AC=b,和角 C,求解 c,B,A引出课题:余弦定理(二)设置问题,知识探究1、探究:我们可以先研究计算第三边长度的问题,那么我们又从那些角度研究这个问题能得到一个关系式或计算公式呢?设计意图:期望能引导学生从各个不同的方面去研究、探索得到余弦定理。师生活动:从某一个角度探索并得出余弦定理2、考虑用向量的数量积:如图 AC B BcacbAbaCCabaacc,ABbCBos2, cos2)(,222 2引 导 学 生 证 明即 那 么设 还可以考虑用
5、解析几何中的两点间距离公式来研究:引导学生运用此法来进行证明13、余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。(可以让学生自己总结,教师补充完整)(三)典型例题剖析:1、例 1:在 ABC 中,已知 b=2cm,c=2cm,A=1200,解三角形。教师分析、点拨并板书证明过程总结:已知三角形的两边和它们的夹角解三角形,基本思路是先由余弦定理求出第三边,再由正弦定理求其余各角。变式引申:在ABC 中,已知 b=5,c=5 ,A=300,解三角形。32、探究:余弦定理是关于三角形三边和一个角的一个关系式,把这个关系式作某些变形,是否可以解决其他类型
6、的解三角形问题?设计意图:(1)引入余弦定理的推论( 2)对一个数学式子作某种变形,从而得到解决其他类型的数学问题,这是一种基本的研究问题的方法。师生活动:对余弦定理作某些变形,研究变形后所得关系式的应用。因此应把重点引导到余弦定理的推论上去,即讨论已知三边求角的问题。引入余弦定理的推论:cosA= , bca2cosB= , cosC=acb2a21公式作用:(1) 、已知三角形三边,求三角。(2) 、若 A 为直角,则 cosA=0,从而 b2+c2=a2若 A 为锐角,则 cosA0, 从而 b2+c2a2若 A 为钝角,则 cosA0, 从而 b2+c2a 2CBAcbaBC、求中已
7、知 在例 ,26,2,3,:2 先让学生自己分析、思索,老师进行引导、启发和补充,最后师生一起求解。总结:对于已知三角形的三边求三角这种类型,解三角形的基本思路是先由余弦定理求出两角,再用三角形内角和定理求出第三角。 (可以先让学生归纳总结,老师补充)变式引申:在ABC 中,a:b:c=2: :( +1),求 A、B、C。63让学生板练,师生共同评判3、三角形形状的判定:例 3:在ABC 中,acosA=bcosB,试确定此三角形的形状。(教师引导学生分析、思考,运用多种方法求解)求解思路:判断三角形的形状可有两种思路,一是利用边之间的关系来判定,在运算过程中,尽可能地把角的关系化为边的关系;
8、二是利用角之间的关系来判定,将边化成角。变式引申:在ABC 中,若(a+b+c)(b+c-a)=3bc,并且sinA=2sinBcosC,判断ABC 的形状。让学生板练,发现问题进行纠正。(四)课堂检测反馈:11、已知在ABC 中,b=8,c=3,A=60 0,则 a=( )A 2 B 4 C 7 D 92、在ABC 中,若 a= +1,b= -1,c= ,则ABC 的最大角310的度数为( ) A 120 0 B 900 C 600 D 15003、在ABC 中,a:b:c=1: :2,则 A:B:C=( )A 1:2:3 B 2:3:1 C 1:3:2 D 3:1:24、在不等边ABC 中
9、,a 是最大的边,若 a2b2+c2,则A 的取值范围是( ) A( , ) B( ) C( ) 24,3D(0, )25、在ABC 中,AB=5,BC=6,AC=8,则ABC 的形状是( )A 锐角三角形 B 直角三角形 C 钝角三角形 D 非钝角三角形(五)课时小结:(学生自己归纳、补充,培养学生的口头表达能力和归纳概括能力,教师总结)运用多种方法推导出余弦定理,并灵活运用余弦定理解决解三角形的两种类型及判断三角形的形状问题。(六)课后作业:课本第 10 页 A 组 3(2) 、4(2) ;B 组第 2 题 (七)教学反思:本堂课的设计,立足于所创设的情境,注重提出问题,引导学生自主探索、合作交流,亲身经历了提出问题、解决问题的过程,学生成为余弦定理的“ 发现者” 和“创造者”,切身感受到了创造的苦1和乐,知识目标、能力目标、情感目标均得到了较好的落实。