1、1课题 6.2.1 等差数列的概念说课稿尊敬的各位领导各位老师大家上午好!今天我说课内容是选自人教版数学(基础模块)下 册第六章第二节等差数列的概念 ,本节是第一课时。下面我将从说教材、说学生、说教法与学法、说教学过程设计等方面来对本节课进行说明。一、 教材分析1.教材的地位与作用等差数列是数列这一章的重要内容之一,它在实际生活中有广泛的应用。本节内容是学生在学习了数列的有关概念的基础上,对数列的知识进一步深入学习和拓展。同时等差数列的学习也为今后继续学习等比数列提供了学习对比的依据。所以,本节课在知识结构上起着承上启下的作用。2、教学目标根据教学大纲与学生的实际情况我制定如下教学目标:【知识
2、目标】a.理解等差数列的概念,掌握等差数列的通项公式。b. 逐步灵活应用等差数列的概念和通项公式解决问题。【能力目标】通过教学,培养学生的观察、分析、归纳、推理的能力;提高学生分析问题解决问题的能力。【情感目标】a让学生体验从特殊到一般的认知规律,培养学生勇于创新的2科学精神。b. 让学生养成细心观察、认真分析问题的良好的思维习惯。3.教学重难点【教学重点】等差数列的概念和通项公式。【教学难点】等差数列的通项公式推导过程及灵活应用。二、学情分析中职学生数学基础比较薄弱,但作为高中生他们本身具备一定的观察,思考,分析能力。前面已对数列的知识有了初步的接触与认识,对数学公式运用已具备一定的技能,针
3、对学生的这些情况我在教学中从学生的生活经验和已有的知识背景出发,充分调动学生的积极性,发挥他们的主观能动性及其在教学过程中的主体地位。三、教法与学法【教法分析】本节课我采用启发式、小组探究法以及讲练结合的教学方法。通过问题激发学生求知欲,在教师的启发引导下,使学生主动参与数学实践活动,让学生去分析、探索,得到结论。从而使学生既获得知识又发展智能。通过讲练结合法可以及时巩固所学内容,抓住重点,突破难点。【学法分析】在引导分析时,留出学生的思考空间,让学生去观察分析,探索新知。同时鼓励学生大胆质疑,学会探究,把思路方法和需要解决的问题弄清。 四、教学过程设计3本节课教学过程有(一)情境引入(二)新
4、课探究(三)应用举例(四)反馈练习(五)课后小结(六)布置作业六个环节组成。(一)情境引入:多媒体展现情境:一个小探险家在古墓中寻宝,来到宝藏门外,发现门上有四个从0-9 的刻度的转盘,要求把四个转盘分别转到指定数字,门才能打开。门上还有四组数字,如下:1)1,3,5, (7 ) ,9 2)15,12, ( 9) ,6,33)48,53,58, (6)3,68 4)8, (8 ) ,8,8,8分析情境提问:问题 1:你能帮助小探险家正确找出密码进入宝藏的大门吗?对于第一问学生很容易回答。问题 2:你能发现这些数字的共同规律吗?教师分组,让学生观察探讨得出结论。上述数列的特点教师总结:第二项起,
5、每一项与它前面一项的差等于同一个常数(即等差) 我们给具有这种特征的数列一个名字等差数列。设计意图:以学生比较喜欢的探险内容为引题,可以引起学生对本节课的兴趣,激发学生的求知欲。从实例中让学生自己发现规律,引出等差数列的概念,培养学生由特殊到一般的认知能力。 (二) 新课探究41、等差数列的概念:(教师板书定义)让学生找出定义中的关键字。 “从第二项起”满足条件;每一项与它的前一项的差必须是同一个常数;公差 d 一定是由相邻两项中的后一项减前一项所得;同时为了配合概念的理解,我让学生做一组练习,采用小组抢答的方式回答。目的是更好理解等差数列的定义。练习一、由学生判断下列数列是否为等差数列,如果
6、是,找出公差。1,2,4,6,8,10,12,; 0,1,2,3,4,5,6,;3,3,3,3,3,3,3,; 2,4,7,11,16,; 8,6,4,0,2,4,; 3,0,3,6,9,教师强调:公差可以是正数、负数,也可以是0。上述第三个数列叫常数列,它是等差数列,且公差为0.问题 3:第一届现代奥运会于 1896 年在希腊雅典举行,此后每 4 年举行一次,奥运会如因故不能举行,届数照算.第 29 届奥运会于 2008 年在北京举行。那么你能说出第 40 届奥运会在哪一年举行吗?设计意图:设置这个问题为推导等差数列的通项公式做铺垫。在学生完成反馈练习后,再让学生利用学过的公式后解决此问题。
7、2、等差数列的通项公式5若一等差数列a n 的首项是 a1,公差是 d,则根据定义可得:a2 - a1 =d 即: a2 =a1 +da3 a2 =d 即: a3 =a2+d = a1 +2da4 a3 =d 即: a4 =a3 +d = a1 +3d猜想: a40 = a1 +39d 进而归纳出等差数列的通项公式: an=a1+(n-1)d在归纳等差数列通项公式中,我采用小组讨论式的教学方法。给出等差数列的首项 a1,公差 d,由学生研究分组讨论填空,然后猜想 a5、 a40等于什么。进而归纳 an 的通项公式。整个过程由学生完成,通过互相讨论的方式培养了学生的协作意识。(三)应用举例例1
8、求等差数列8,5,2 ,的通项公式及第20项。例2 等差数列5,9,13 , 的第多少项是401?设计意图:这一环节通过师生互动,共同完成例题解答。使学生通过例题,增强对通项公式含义的理解以及对通项公式的运用。通过例 1 例 2 向学生表明:等差数列通项公式中的 a1、d、n、a n 这 4 个量之间的关系。当其中的三个变量已知时,可根据该公式求出另一变量。(四)反馈练习练习二(1)求等差数列3,7,11,的第4,7,10项(2)求等差数列10,8,6,的第20项练习三 在等差数列a n中:(1)1)d1 ,a 7 8,求 a1 ;6(2)a 1 = 12,a 6 = 27,求 d(要求学生在
9、规定时间内完成) 。设计意图:在这一环节,开展小组竞答,激励评价,不仅达到检测目的,更使课堂气氛活跃。通过练习,使学生对通项公式能更加熟练地 应用,突破重难点。(五)归纳小结(由学生总结这节课的收获)1.等差数列的概念2.等差数列的通项公式 an= a1+(n-1) d 会知三求一设计意图:在教师的引导下,让学生反思、归纳、总结,培养学生的概括能力、表达能力。(六)布置作业必做题:1、教材 P17,练习 B 组第1,2,3题选做题:一种车床变速箱的 8 个齿轮齿数成等差数列,其中首末两个齿轮的齿数分别是 24 与 45,求其余各齿轮的齿数。 (设计意图:通过分层作业,满足不同层次学生要求,通过选做题可使学生明白数学来源于生活,也用于解决生活实际问题。 )板书设 计预测评价:整节课教学环节紧扣,能体现教师与学生的交流互动。在教师的引导下,学生通过小组合作交流探究,得出新知,使学生参与到课堂中。从实例出发,激发了学生的兴趣。在知识的应用中,等差数列的概念1、概念 推导过程 例题1 例题22.等差数列的通项公式7我采用讲练结合的方法突破了重难点,基本上达到教学目的。我还有许多不足之处还需批评指正。