1、初中数学优秀说课稿大集合全部说课稿目录16.3分式方程解法说课稿17.2反比例函数说课稿18.1探索勾股定理第一课时说课稿18.1勾股定理说课稿勾股定理说课稿18.2勾股定理的逆定理说课稿19.1平行四边形的说课稿19.2.2菱形(1)定义与性质说课稿20.2数据的波动说课稿(第一课时)除法说课稿矩形 (第一课时)说课稿实际问题与反比例函数(第三课时)教案说明 平行四边形的判定(1) 说课稿分式的意义说课稿“形的判定”说课稿菱形(第 2 课时)16.3分式方程解法说课稿课标指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。 ”从教师的教学角度上看:教师是进行数学活
2、动的组织者、引领者,是教学活动的主导;从学生的学习角度上看:数学活动是学生经历数学化过程的活动,是学生自己建构数学知识的活动,是学习活动的主体;从师生的合作角度上看:数学活动过程是教师和学生之间互动的过程,是师生共同发展的过程,即要促进学生发展,也要促进教师成长。教师作为数学教学主导,在设计数学活动时要遵循以下原则:一、根据学生的年龄特征和认知特点组织教学。二、重视培养学生的应用意识和实践能力。1、让学生在现实情境和已有的生活和知识经验中体验和理解数学。2、培养学生应用数学的意识和提高解决问题的能力。三、重视引导学生自主探索,培养学生的创新精神。1、引导学生动手实践、自主探索和合作交流。2、鼓
3、励学生解决问题策略的多样化。四、教师对教学目标,难点,重点把握要恰当、具体。数的计算非常重要,计算是帮助我们解决问题的工具,只有在具体的情境中才能让学生真正认识计算的作用。首先应当让学生理解的是面对具体的情境,确定是否需要计算,然后再确定需要什么样的计算方法。口算、笔算、估算、计算器和计算机都是供学生选择的方式,都可以达到算出结果的目的。一、设计思想:数学来源于生活,数学教学应走进生活,生活也应走进数学,数学与生活的结合,会使问题变得具体、生动,学生就会产生亲近感、探究欲,从而诱发内在学习潜能,主动动手、动口、动脑。因此,在教学中,我们应自觉地把生活作为课堂,让数学回归生活,服务生活。培养学生
4、的动手能力和创新能力,丰富和发展学生的数学活动经历,并使学生充分体会到数学之趣、数学之用、数学之美。处理好教与学的关系。教师既要做到精讲精练,又要敢于放手引导学生参与尝试和讨论,展开思维活动 。根据新教材留给学生一定的思维空间的特点,教师要鼓励学生自己动脑参与探索,让学生有发表意见的机会,绝对不能包办代替,使学生不仅能学会,而且能会学。充分发挥网络在课堂教学中的优势,力争促进学生学习方式的转变,由被动听讲式学习转变为积极主动的探索发现式学习。数学问题生活化,主导主体相结合,发挥媒体技术优势,探究练习相结合,符合课标精神。网络环境下代数课的教学模式:设置情境-提出问题-自主探究-合作交流-反思评
5、价-巩固练习-总结提高二、背景分析:(一)学情分析:内容是义务教育课程标准实验教科书(人民教育出版社)数学八年级下册第十六章:分式学生是本校初二实验班的学生,参加北师大“基础教育跨越式发展”课题实验一年半,学生基础知识较扎实,具有一定探索解决问题的能力,电脑使用水平较熟练,对于网络环境下的学习模式已适应。本节课实施网络环境下教学,采用自学导读式教学模式。学生喜欢上网络数学课,学习数学的兴趣较浓。(二)内容分析:本节内容是在学生掌握了一元一次方程的解法和分式四则运算的基础上进行的,为后面学习可化为一元二次方程的分式方程打下基础。通过经历实际问题列分式方程探究解分式方程的过程,体会分式方程是一种有
6、效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透类比转化思想。(三)教学方式:自学导读同伴互助精讲精练(四)教学媒体:Midea-Class 纯软多媒体教学网 几何画板三、教学目标:知识技能:了解分式方程定义,理解解分式方程的一般解法和分式方程可能产生增根的原因,掌握解分式方程验根的方法。过程方法:通过经历实际问题列分式方程探究解分式方程的过程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,渗透转化思想。情感态度:强化用数学的意识,增进同学之间的配合,体验在数学活动中运用知识解决问题的成功体验,树立学好数学的自信心。教学重点:解
7、分式方程的基本思路和解法。教学难点:理解分式方程可能产生增根的原因。设计说明:情感、态度、价值观目标不应该是一节课或一学期的教学目标,它应该贯穿于初中数学教学的每一堂课,它应该与具体的数学知识联系在一起,才能让教师好把握,学生好掌握,否则就是空中楼阁,雾里看花,水中望月。四、板书设计:a 不是分式方程的解(二)学习方法:类比与转化教学思考:伴随教学过程的进行,不失时机的,恰到好处的书写板书,要比用多媒体呈现出来效果好,绝不能用媒体技术替代应有的板书,现代教育技术与传统教育技术完美的结合才是提高课堂教学效率的有效途径之一。五、教学过程:活动 1:创设情境,列出方程设计说明:教师不失时机的对学生进
8、行思想教育,激励学生,寓德于教。体现了教学评价之美-激励启迪。设计说明:通过经历实际问题列分式方程,体会分式方程是一种有效描述现实世界的模型,发展学生分析问题解决问题的能力,培养应用意识,激发学生的探究欲与学习热情,为探索分式方程的解法做准备。活动 2:总结定义,探究解法使学生能从整体上把握数、式、方程及它们之间的联系与区别;通过合作探究分式方程的解法,培养学生的探究能力,增强利用类比转化思想解决实际问题的能力及合作的意识。教学思考:再一次体现了对全章进行整体设计的好处,在学习 16.1 分式和 16.2 分式的运算时,几乎每一节课都运用类比的思想-分式与分数类比和进行算法多样化训练,所以才出
9、现了这样好的效果。在利用媒体技术拓展学习内容时要遵循以下原则:一、拓展内容要与所学内容有有机联系。二、拓展内容要符合学生实际认知水平,不要任意拔高。三、拓展内容要适量,不要信息过载。活动 3:讲练结合,分析增根活动 5:布置作业,深化巩固(略)17.2 反比例函数说课稿一、教材分析:反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。二、教学目标分析根据二期课改“以学生为主体
10、,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。三、教学重点难点分析本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;难点则是如何抓住特征准确画出反比例
11、函数的图象。为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。四、教学方法鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究讨论交流总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,
12、观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。五、学法指导本堂课立足于学生的“学” ,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学” ,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。六、教学过程(一) 复习引入反函数解析式练习 1:写出下列各题的关系式:(1) 正方形的周长 C 和它的一边的长 a 之间的关系(2) 运动会的田径比赛中,运动员小王的平均速度是
13、8 米/秒,他所跑过的路程 s 和所用时间 t 之间的关系(3) 矩形的面积为 10 时,它的长 x 和宽 y 之间的关系(4) 王师傅要生产 100 个零件,他的工作效率 x 和工作时间 t 之间的关系问题 1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?问题 1 主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。问题 2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗? 通过问题 2 来引出反比例函数的解析式 ,请学生对比正比例函数的定)0(kxy义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比
14、和探究能力。例题 1:已知变量 y 与 x 成反比例,且当 x=2 时,y=9(1) 写出 y 与 x 之间的函数解析式(2) 当 x=3.5 时,求 y 的值(3) 当 y=5 时,求 x 的值通过对例 1 的学习使学生掌握如何根据已知条件来求出反比例函数的解析式。在解题过程中,引导学生运用在求正比例函数的解析式时用到的“待定系数法” ,先设反比例函数为,再把相应的 x,y 值代入求出 k,k 值的确定,函数解析式也就确定了。)0(kxy课堂练习:已知 x 与 y 成反比例,根据以下条件,求出 y 与 x 之间的函数关系式(1)x=2,y=3 (2)x= ,y=124通过此题,对学生掌握如何
15、根据已知条件去求反比例函数的解析式的学习情况做一个简单的反馈。(二)探究学习 1函数图象的画法问题 3:如何画出正比例函数的图象?通过问题 3 来复习正比例函数图象的画法主要分为列表、描点、连线三个步骤,为学习反比例函数图像的画法打下基础。问题 4:那反比例函数的图象应该怎样去画呢?在教学过程中可以引导学生仿照正比例函数图象的的画法。设想的教学设计是:(1) 引导学生运用在画正比例函数图象中所学到的方法,分小组讨论尝试,采用列表、描点、连线的方法画出函数 和 的图象;xy8(2) 老师边巡视,边指导,用实物投影仪反映一些学生在函数图象中出现的典型错误,和学生一起找出错误的地方,分析原因;(3)
16、 随后老师在黑板上演示画好反比例函数图像的步骤,展示正确的函数图象,引导学生观察其图象特征(双曲线有两个分支) 。初二学生是首次接触到双曲线这种比较特殊函数图象,设想学生可能会在下面几个环节中出错:(1) 在“列表”这一环节在取点时学生可能会取零,在这里可以引导学生结合代数的方法得出 x 不能为零。也可能由于在取点时的不恰当,导致函数图象的不完整、不对称。在这里应该要指导学生在列表时,自变量 x 的取值可以选取绝对值相等而符号相反的数,相应的就得到绝对相等而符号相反的对应的函数值,这样可以简化计算的手续,又便于在坐标平面内找到点。(2) 在“连线”这一环节学生画的点与点之间连线可能会有端点,未
17、能用光滑的线条连接。因而在这里要特别要强调在将所选取的点连结时,应该是“光滑曲线” ,为以后学习二次函数的图像打下基础。为了使函数图象清晰明显,可以引导学生注意尽量选取较多的自变量 x 的值和对应的函数值 y,以便在坐标平面内得到较多的“点” ,画出曲线。从而引导学生画出正确的函数图象。(3) 图象与 x 轴或 y 轴相交在这里我认为可以埋下一个伏笔,给学生留下一个悬念,为后面学习函数的性质打下基础。需要说明的是:利用多媒体课件学习能吸引学生的注意力,引起学生进一步学习的兴趣。不过,尽管多媒体的演示既快又准确,我认为在学生第一次学画反比例函数图象的过程中,老师还是应该在黑板上认真示范画出图象的
18、每一个步骤,毕竟多媒体还是不能替代我们平时老师在黑板上板书。巩固练习:画出函数 和 的图象xy6通过巩固练习,让学生再次动手画出函数图象,改正在初次画图象时出现在一些问题。老师使用函数图象的课件,用屏幕显示的函数图象验证学生画出的函数图象的准确性。(三) 探究学习 2函数图象性质1、图象的分布情况问题 5:请大家回忆一下正比例函数 的分布情况是怎么样的呢?)0(kxy提出问题 5 主要是起到巩固复习,为引导学生学习反比例函数图象的分布情况打下基础。问题 6:观察刚才所画的图象我们发现反比例函数的图象有两个分支,那么它的分布情况又是怎么样的呢?在这一环节中的设计:(1) 引导学生对比正比例函数图
19、象的分布,启发他们主动探索反比例函数的分布情况,给学生充分考虑的时间;(2) 充分运用多媒体的优势进行教学,使用函数图象的课件试着任意输入几个 k 的值,观察函数图象的不同分布,观察函数图象的动态演变过程。把不同的函数图象集中到一个屏幕中,便于学生对比和探究。学生通过观察及对比,对反比例函数图象的分布与 k 的关系有一个直观的了解;(3) 组织小组讨论来归纳出反比例函数的一条性质:当 k0 时,函数图象的两支分别在第一、三象限内;当 k0时,自变量 x 逐渐增大时,y 的值则随着逐渐减小;当 k0,分别比较在第三象限 x-2,第一象限 x2 时的 y 的值的大小,则以上性质是否依然成立?学生的
20、回答应该是:不成立。这时老师再请学生做小结:必须限定在每一个象限内,才有以上性质成立。问题 9:当函数图象的两个分支无限延伸时,它与 x 轴、y 轴相交吗?为什么?在这个环节中,可以结合刚才学生所画的错误图象,引导学生可以通过代数的方法分析反比例函数的解析式 ,由分母不能为零,得 x 不能为零。由 k0,得 y 必不为零,从而验证了反)0(kxy比例函数的图象。当两个分支无限延伸时,可以无限地逼近 x 轴、y 轴,但永远不会与两轴相交。随即强调画图时要注意准确性。(四) 备用思考题1、 反比例函数 的图象在第一、三象限,求 a 的取值范围3ayx2、 2(1)my(1) 当 m 为何值时,y
21、是 x 的正比例函数(2) 当 m 为何值时,y 是 x 的反比例函数(五) 小结:1、 通过列表的形式,引导学生小结反比例函数的性质图象分布 函数变化情况名称 解析式 图像k0 k0 k0正比例函数y=kx(k 0)是一条经过原点和(1,k)的直线一、三象限二、四象限y 随 x的增大而增大y 随 x的增大而减小反比例函数)0(kxy双曲线 一、三象限二、四象限y 随 x的增大而减小y 随 x的增大而增大2、 请学生小结一下我们在画图象的过程中需要大家注意的地方(1) 在列表过程中,x 的值不能取 0;取值可以由原点向两侧取相反数;可以适当的多取一些点,方便连线(2) 反比例函数图象是光滑曲线
22、(3) 函数图象只能是无限逼近 y 轴和 x 轴,永远不会和两轴相交(六) 作业基础题:A 册习题 21.5提高题:同步 72 页第 14,15,16 题18.1探索勾股定理第一课时说课稿一、 教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。(二)教学目标 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.过程与方法
23、:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。教学难点:用面积法(拼图法)发现勾股定理。突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.二、教法与学法分析:学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力他们在小
24、学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强 教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境-建立模型-解释应用-拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.三、 教学过程设计 1.创设情境,提出问题 2.实验操作,模型构建 3.回归生活,应用新知 4.知识拓展,巩固深化 5
25、.感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏 勾股定理数形图 1955 年希腊发行 美丽的勾股树 2002 年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值. (2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高 3 米,消防队员取来 6.5 米长的云梯,如果梯子的底部离墙基的距离是 2.5 米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.二、实验操作模型构建1.等腰直角三角形(数
26、格子)2.一般直角三角形(割补)问题一:对于等腰直角三角形,正方形、的面积有何关系?设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.问题二:对于一般的直角三角形,正方形、的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流)设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.通过以上实验归纳总结勾股定理.设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊 一般的认知规律.三.回归生活应用新知让学生解决开头情景中的问题,前呼后应,增强学生学数
27、学、用数学的意识,增加学以致用的乐趣和信心.四、知识拓展巩固深化 基础题,情境题,探索题.设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.基础题: 直角三角形的一直角边长为 3,斜边为 5,另一直角边长为 X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?设计意图:这道题立足于双基通过学生自己创设情境 ,锻炼了发散思维情境题:小明妈妈买了一部 29 英寸(74 厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有 58厘米长和 46 厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?设计意图:增加学生的生活常识,也
28、体现了数学源于生活,并用于生活。 探索题: 做一个长,宽,高分别为 50 厘米,40 厘米,30 厘米的木箱,一根长为 70 厘米的木棒能否放入,为什么?试用今天学过的知识说明。设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力. 五、感悟收获布置作业: 这节课你的收获是什么?作业: 1、课本习题 2.1 2、搜集有关勾股定理证明的资料.板书设计 探索勾股定理如果直角三角形两直角边分别为 a,b,斜边为 c,那么22cba设计说明:1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法2.让学生
29、人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平.18.1 勾股定理说课稿一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。据此,制定教学目标如下:1、理解并掌握勾股
30、定理及其证明。2、能够灵活地运用勾股定理及其计算。3、培养学生观察、比较、分析、推理的能力。4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。二、教学重点:勾股定理的证明和应用。三、 教学难点:勾股定理的证明。四、教法和学法: 教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。