1、1一元一次方程应用题归类汇集一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程速度时间 时间路程 速度 速度路程 时间2.行程问题基本类型(1)相遇问题: 快行距慢行距原距(2)追及问题: 快行距慢行距原距1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米,公交车的速度为每小时 40 千米,设甲、乙两地相距 x 千米,则列方程为 。解:等量关系 步行时间乘公交车的时间3.6 小时 2、某人从家里骑自行车到学校。若每小时行 15 千米,可比预定时间早到 15 分钟;若每小时行 9千米,可比预定时间晚到 15 分钟;求从家里到学校的路程有多少
2、千米?解:等量关系 速度 15 千米行的总路程速度 9 千米行的总路程 速度 15 千米行的时间15 分钟速度 9 千米行的时间15 分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间 等式的方程。方法一:方法二: 3、一列客车车长 200 米,一列货车车长 280 米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过 16 秒,已知客车与货车的速度之比是 3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两 车车长和为总路程的相遇 问题。等量关系:快车行的路程慢车行的路程两列火车的车长之和设客车的速度为 3x 米/秒,货车的速度为 2x 米/ 秒,4、与铁路平
3、行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时 10.8km。如果一列火车从他们背后开来,它通过行人的时间是 22 秒,通过骑自行车的人的时间是 26 秒。 行人的速度为每秒多少米? 这列火车的车长是多少米?提醒:将火车车尾视为一个快者, 则此题为以车长为提前量的追 击问题。等量关系: 两种情形下火车的速度相等 两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。解: 行人的速度是:3.6km/时3600 米3600 秒1 米/秒骑自行车的人的速度是:10.8km/时10800 米3600 秒3
4、 米/ 秒 方法一:设火车的速度是 x 米/秒, 则 26(x3)22(x1) 解得 x4方法二:设火车的车长是 x 米, 则 266、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车速度是 60 千米/时,步行的速度是 5 千米/时,步行者比汽车提前 1 小时出发,这辆汽车到达目的地后,再2回头接步行的这部分人。出发地到目的地的距离是 60 千米。问:步行者在出发后经过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)提醒:此类题相当于环形跑道问题,两者行的 总路程为一圈即 步行者行的总路程汽车行的总路程602解:设步行者在出发后经过 x 小时与回头接他们的汽车
5、相遇,7、某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可在规定的时间到达 B 地,但他因事将原计划的时间推迟了 20 分,便只好以每小时 15 千米的速度前进,结果比规定时间早 4 分钟到达 B 地,求 A、B 两地间的距离。解:方法一:设由 A 地到 B 地规定的时间是 x 小时, 则12x x2 12 x12224( 千米) 604215方法二:设由 A、B 两地的距离是 x 千米, 则 (设路程,列时间等式)x24 答:A 、B 两地的距离是 24 千米。温馨提醒:当速度已知,设时间 ,列路程等式; 设路程,列时间等式是我们的解题策略。8、一列火车匀速行驶,经过一条
6、长 300m 的隧道需要 20s 的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是 10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。解析:只要将车尾看作一个行人去分析即可,前者为此人通过 300 米的隧道再加上一个车长,后者 仅为 此人通过一个车长。此题中告诉时间,只需设车长 列速度关系,或者是 设车速列 车长关系等式。解:方法一:设这列火车的长度是 x 米,根据题意,得x300 答:这列火车长 300 米。1023方法二:设这列火车的速度是 x 米/秒,根据题意,得 20x30010x x30 10x300 答:这列火车长 300 米。9、甲
7、、乙两地相距 x 千米,一列火车原来从甲地到乙地要用 15 小时,开通高速铁路后,车速平均每小时比原来加快了 60 千米,因此从甲地到乙地只需要 10 小时即可到达,列方程得 。答案: 601511、甲、乙两人同时从 A 地前往相距 25.5 千米的 B 地,甲骑自行车,乙步行,甲的速度比乙的速度的 2 倍还快 2 千米/时,甲先到达 B 地后,立即由 B 地返回,在途中遇到乙,这时距他们出发时已过了 3 小时。求两人的速度。10、两列火车分别行驶在平行的轨道上,其中快车车长为 100 米,慢车车长 150 米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为 5 秒。 两车的速度之和及
8、两车相向而行时慢车经过快车某一窗口所用的时间各是多少? 如果两车同向而行,慢车速度为 8 米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车3的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?解析: 快车驶过 慢车某个窗口时:研究的是慢车窗口的人和快车车尾的人的相遇问题,此时行驶的路程和 为快车车长! 慢车驶过 快 车某个窗口时:研究的是快车窗口的人和慢车车尾的人的相遇问题,此时行驶的路程和 为慢车车长! 快车 从后面追赶慢 车时:研究的是快车车尾的人追赶慢车车头的人的追击问题,此时行驶的路程和 为两车车长之和!解: 两车的速度之和100520(米/ 秒) 慢车经过快车某一窗口所用
9、的时间150207.5(秒) 设至少是 x 秒, (快车车速为 208)则 (208)x8x100150 x62.5答:至少 62.5 秒快车从后面追赶上并全部超过慢车。二、环行跑道与时钟问题:2、甲、乙两人在 400 米长的环形跑道上跑步,甲分钟跑 240 米,乙每分钟跑 200 米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?老师提醒:此题为环形跑道上,同 时同地同向的追击与相遇 问题。例 1某队伍 450 米长,以每分钟 90 米速度前进,某人从排尾到排头取东西后,立即返回排尾,速度为 3 米/秒.问往返共需多少时间?讲评:这一问题实际上分为两个过程:从排尾到排头的过
10、程是一个追及过程,相当于最后一个人追上最前面的人;从排头回到排尾的过程则是一个相遇过程,相当于从排头走到与排尾的人相遇.在追及过程中,设追及的时间为 x 秒,队伍行进(即排头)速度为 90 米/分=1.5 米/秒,则排头行驶的路程为 1.5x 米;追及者的速度为 3 米/秒,则追及者行驶的路程为 3x 米.由追及问题中的相等关系“追赶者的路程被追者的路程=原来相隔的路程”,有:3x1.5x=450 x=300 在相遇过程中,设相遇的时间为 y 秒,队伍和返回的人速度未变,故排尾人行驶的路程为 1.5y 米,返回者行驶的路程为 3y 米,由相遇问题中的相等关系“甲行驶的路程+乙行驶的路程= 总路
11、程”有: 3y+1.5y=450 y=100故往返共需的时间为 x+y=300+100=400(秒)例 2 汽车从 A 地到 B 地,若每小时行驶 40km,就要晚到半小时:若每小时行驶 45km,就可以早到半小时.求 A、B 两地的距离.讲评:先出发后到、后出发先到、快者要早到慢者要晚到等问题,我们通常都称其为“先后问题”.在这类问题中主要考虑时间量,考察两者的时间关系,从相隔的时间上找出相等关系.本题中,设 A、B 两地的路程为x km,速度为 40 km/小时,则时间为小时;速度为 45 km/小时,则时间为小时,又早到与晚到之间相隔 1 小时,故有三、行船与飞机飞行问题:航行问题:顺水
12、(风)速度静水(风)速度水流(风)速度逆水(风)速度静水(风)速度水流(风)速度 水流速度= (顺水速度-逆水速度)21、 一艘船在两个码头之间航行,水流的速度是 3 千米/时,顺水航行需要 2 小时,逆水航行需要3 小时,求两码头之间的距离。解:设船在静水中的速度是 x 千米/时, 则42、一架飞机飞行在两个城市之间,风速为每小时 24 千米,顺风飞行需要 2 小时 50 分钟,逆风飞行需要 3 小时,求两城市间的距离。解:3、小明在静水中划船的速度为 10 千米/时,今往返于某条河,逆水用了 9 小时,顺水用了 6 小时,求该河的水流速度。解:4、某船从 A 码头顺流航行到 B 码头,然后
13、逆流返行到 C 码头,共行 20 小时,已知船在静水中的速度为 7.5 千米/时,水流的速度为 2.5 千米/时,若 A 与 C 的距离比 A 与 B 的距离短 40 千米,求A 与 B 的距离。解:设 A 与 B 的距离是 x 千米, (请你按下面的分类画出示意图,来理解所列方程) 当 C 在 A、B 之间时, 解得 x120205.74.25x 当 C 在 BA 的延长线上时, 解得 x56x答:A 与 B 的距离是 120 千米或 56 千米。四、工程问题1工程问题中的三个量及其关系为:工作总量工作效率工作时间 工 作 总 量工 作 效 率 工 作 时 间工 作 总 量工 作 时 间 工
14、 作 效 率2经常在题目中未给出工作总量时,设工作总量为单位 1。即完成某项任务的各工作量的和总工作量11、一项工程,甲单独做要 10 天完成,乙单独做要 15 天完成,两人合做 4 天后,剩下的部分由乙单独做,还需要几天完成?解:2、某工作,甲单独干需用 15 小时完成,乙单独干需用 12 小时完成,若甲先干 1 小时、乙又单独干 4小时,剩下的工作两人合作,问:再用几小时可全部完成任务? 解:设甲、乙两个龙头齐开 x 小 时。由已知得,甲每小时灌池子的 ,乙每小时灌池子的 。233、某工厂计划 26 小时生产一批零件,后因每小时多生产 5 件,用 24 小时,不但完成了任务,而且还比原计划
15、多生产了 60 件,问原计划生产多少零件? 4、某工程,甲单独完成续 20 天,乙单独完成续 12 天,甲乙合干 6 天后,再由乙继续完成,乙再做几天可以完成全部工程? 解:5、已知甲、乙二人合作一项工程,甲 25 天独立完成,乙 20 天独立完成,甲、乙二人合 5 天后,5甲另有事,乙再单独做几天才能完成?解:6、将一批工业最新动态信息输入管理储存网络,甲独做需 6 小时,乙独做需 4 小时,甲先做 30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?解: 五、市场经济问题1、某高校共有 5 个大餐厅和 2 个小餐厅经过测试:同时开放 1 个大餐厅、2 个小餐厅,可供1680
16、 名学生就餐;同时开放 2 个大餐厅、1 个小餐厅,可供 2280 名学生就餐(1)求 1 个大餐厅、1 个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的 5300 名学生就餐?请说明理由解:(1)(2)2、工艺商场按标价销售某种工艺品时,每件可获利 45 元;按标价的八五折销售该工艺品 8 件与将标价降低 35 元销售该工艺品 12 件所获利润相等.该工艺品每件的进价、标价分别是多少元?解:3、某地区居民生活用电基本价格为每千瓦时 0.40 元,若每月用电量超过 a 千瓦则超过部分按基本电价的 70%收费(1)某户八月份用电 84 千瓦时,共交电费 30.72 元,
17、求 a(2)若该用户九月份的平均电费为 0.36 元,则九月份共用电多少千瓦?应交电费是多少元? 解:(1)(2)设九月份共用电 x 千瓦时4、某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为 60 元,八折出售后,商家所获利润率为 40%。问这种鞋的标价是多少元?优惠价是多少?利润率= 成 本利 润5、甲乙两件衣服的成本共 500 元,商店老板为获取利润,决定将家服装按 50%的利润定价,乙服装按 40%的利润定价,在实际销售时,应顾客要求,两件服装均按 9 折出售,这样商店共获利157 元,求甲乙两件服装成本各是多少元? 解:设甲服装成本价为 x 元,则 乙服装的
18、成本价为(50x)元,根据题意,可列 109x(1+50%) x+(500-x)(1+40%)90% - (500 - x)=157 x=3006、某商场按定价销售某种电器时,每台获利 48 元,按定价的 9 折销售该电器 6 台与将定价降低30 元销售该电器 9 台所获得的利润相等,该电器每台进价、定价各是多少元?(48+X)90%*6 6X=(48+X-30)*9 9X X=162 162+48=21067、甲、乙两种商品的单价之和为 100 元,因为季节变化,甲商品降价 10%,乙商品提价 5%,调价后,甲、乙两商品的单价之和比原计划之和提高 2%,求甲、乙两种商品的原来单价?解:x(1
19、-10%)+(100-x)(1+5%)=100(1+2%) x=208、一家商店将某种服装按进价提高 40%后标价,又以 8 折优惠卖出,结果每件仍获利 15 元,这种服装每件的进价是多少?解:设这种服装每件的进价是 x 元, 则:X(1+40)0.8-x=15 解得 x=125六、调配与配套问题1、某车间有 16 名工人,每人每天可加工甲种零件 5 个或乙种零件 4 个在这 16 名工人中,一部分人加工甲种零件,其余的加工乙种零件已知每加工一个甲种零件可获利 16 元,每加工一个乙种零件可获利 24 元若此车间一共获利 1440 元,求这一天有几个工人加工甲种零件2、有两个工程队,甲工程队有
20、 32 人,乙工程队有 28 人,如果是甲工程队的人数是工程队人数的2 倍,需从乙工程队抽调多少人到甲工程队?3、某班同学利用假期参加夏令营活动,分成几个小组,若每组 7 人还余 1 人,若每组 8 人还缺 6人,问该班分成几个小组,共有多少名同学?4、将一个装满水的内部长、宽、高分别为 300 毫米,300 毫米和 80毫米的长方体铁盒中的水,倒入一个内径为 200 毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到 0.1 毫米,3.14) 5、某车间有 28 名工人生产螺栓和螺母,每人每小时平均能生产螺栓 12 个或螺母 18 个,应如何分配生产螺栓和螺母的工人,才能使螺栓和螺母正好
21、配套(一个螺栓配两个螺母)?6、机械厂加工车间有 85 名工人,平均每人每天加工大齿轮 16 个或小齿轮 10 个,已知 2 个大齿轮与 3 个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?7、某厂一车间有 64 人,二车间有 56 人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间? 8、甲、乙两车间各有工人若干,如果从乙车间调 100 人到甲车间,那么甲车间的人数是乙车间剩余人数的 6 倍;如果从甲车间调 100 人到乙车间,这时两车间的人数相等,求原来甲乙车间的人数。7七、方案设计问题1、某蔬菜公司的一种绿色
22、蔬菜,若在市场上直接销售,每吨利润为 1000 元,经粗加工后销售,每吨利润可达 4500 元,经精加工后销售,每吨利润涨至 7500 元,当地一家公司收购这种蔬菜 140吨,该公司的加工生产能力是: 如果对蔬菜进行精加工,每天可加工 16 吨,如果进行精加工,每天可加工 6 吨,但两种加工方式不能同时进行,受季度等条件限制,公司必须在 15 天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,在市场上直接销售方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好 15 天完成你认为哪种方案获利最
23、多?为什么?解:方案一:总利润方案二:,总利润方案三:总利润2、某家电商场计划用 9 万元从生产厂家购进 50 台电视机已知该厂家生产 3种不同型号的电视机,出厂价分别为 A 种每台 1500 元,B 种每台 2100 元,C 种每台 2500 元(1)若家电商场同时购进两种不同型号的电视机共 50 台,用去 9 万元,请你研究一下商场的进货方案(2)若商场销售一台 A 种电视机可获利 150 元,销售一台 B 种电视机可获利 200 元,销售一台C 种电视机可获利 250 元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案? 解:按购 A,B 两种,B ,C 两种,A, C 两种电视机这三种方案分别计算,设购 A 种电视机 x 台,则 B 种 电视机 y 台(1)当选购 A,B 两种电视机时,B 种电视机购(50-x)台,可得方程当选购 A,C 两种电视机时, C 种电视机购(50-x)台,可得方程 当购 B,C 两种电视机时,C 种电视机为(50-y)台可得方程可选 种方案: (2)若选择 ,可 获利若选择 ,可 获利故为了获利最多,选择 方案