精选优质文档-倾情为你奉上第三节基本不等式复习目标学法指导1.会推导基本不等式.2.会用基本不等式求最值.1.基本不等式具有放缩功能.2.基本不等式可以用来求函数式的最值,但必须具备三个条件,即一正、二定、三相等.3.合理配凑基本不等式的三个条件求最值.4.求最值时尽量避免多次使用基本不等式,若多次使用,必须保证它们等号成立的条件一致,否则会出现错误.(对应学生用书第50页)一、基本不等式基本不等式:(1)基本不等式成立的条件:a0,b0.(2)等号成立的条件:当且仅当a=b时取等号.(3)其中称为正数a,b的算术平均数,称为正数a,b的几何平均数.1.概念理解(1)基本不等式成立的条件是a,b都是正数,在解题时,如果a,b为负数,可提取负号,创造变量为正数的条件,再利用基本不等式解题.(2)在运用基本不等式解题时,注意一定要验证它们成立的条件是否满足.2.与之相关联的结论几个常用的不等式(1)a2+b22ab(a,bR).(2)ab()2(a,bR).(