第四节 两类问题: 在收敛域内 和函数 求 和 展 开 本节内容: 一、泰勒 ( Taylor ) 级数 二、函数展开成幂级数 函数展开成幂级数 机动 目录 上页 下页 返回 结束 第十一章 一、泰勒 ( Taylor ) 级数 其中 ( 在 x 与 x 0 之间) 称为拉格朗日余项 . 则在 若函数 的某邻域内具有 n + 1 阶导数, 此式称为 f (x) 的 n 阶泰勒公式 , 该邻域内有 : 机动 目录 上页 下页 返回 结束 为f (x) 的泰勒级数 . 则称 当x 0 = 0 时, 泰勒级数又称为麦克劳林级数 . 1) 对此级数, 它的收敛域是什么 ? 2) 在收敛域上 , 和函数是否为 f (x) ? 待解决的问题 : 若函数 的某邻域内具有任意阶导数, 机动 目录 上页 下页 返回 结束 定理1 . 各阶导数, 则 f (x) 在该邻域内能展开成泰勒级数的充要 条件是 f (x) 的泰勒公式中的余项满足: 证明: 令 设函数 f (x) 在点 x 0 的某一邻域 内具有 机动 目录 上页 下页 返回 结束 定理2. 若 f (x) 能展成 x 的幂级数, 则这种展开式是