精选优质文档-倾情为你奉上“恒成立问题”的解法常用方法:函数性质法; 主参换位法; 分离参数法; 数形结合法。一、函数性质法nmoxynmoxy1.一次函数型:给定一次函数,若在m,n内恒有,则根据函数的图象(直线)可得上述结论等价于;同理,若在m,n内恒有,则有.例1.对满足的所有实数,求使不等式恒成立的的取值范围。略解:不等式即为,设,则在上恒大于0,故有:,即.2.二次函数:.若二次函数(或)在R上恒成立,则有(或);.若二次函数(或)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。例2.已知函数,若对于任一实数,与的值至少有一个为正数,则实数的取值范围是( )A(0,2) B(0,8) C(2,8) D(,0)选B。例3.设,当时,都有恒成立,求的取值范围。解:设,(1)当时,即时,对一切,恒成立;-1oxy(2)当时,由图可得以
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。