抛物线与直线型(3)由动点生成面积问题知识点归纳面积是平面几何中一个重要的概念,关联这平面图形中的重要元素与角。由动点而生成的面积问题,是抛物线与直线形结合的常见形式。解这类问题常用到以下与面积相关的知识:(1) 图形的割补;(2) 等积变形;(3) 等比变化。经典例题【例1】 如图,在直角坐标系中,点A的坐标为(-2,0),连接OA,将线段OA绕原点O顺时针旋转120,得到线段OB(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C,使BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由(昆明市中考题) 思路点拨 对于(3),抛物线的对称轴是直线,当点C位于的对称轴与线段的交点时,的周长为最小,为此需求出直线AB的解析式;对于(4)过点作轴的平行线交
Copyright © 2018-2021 Wenke99.com All rights reserved
工信部备案号:浙ICP备20026746号-2
公安局备案号:浙公网安备33038302330469号
本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。