1、论对亚泰水泥粉磨站选址的浅析 论文关键词粉磨站 选址 选址模型 论文摘要选址问题为空间资源分配问题,在一般化的选址模型中,一个或多个服务设施为一系列在空间上分布的需求点服务,被建模的问题的空间关系可以是一个一般网络,也可以是一个特殊网络,问题的任务是确定设施的位置 (有时可能是分配顾客到设施 )从面优化一个显性或隐性地依赖于空间关系的目标。 一、选址理论背景概述 选址理论最初是由 Alfred Weber 提出的,他考虑了这样一个选址问题:确定一个仓库使得仓库与一系列在上分散的需求点之间的旅行距离最短,学家 Hotelling提出了竟争性选址问题:两个相互竟争的供应商在一条线路上的选址问题。此
2、后,选址决策的研究在、物流业、城市规划、通讯、铁路等行业进行了一系列相关的应用。但是,在十九世纪六十年代中期以前,该领域的研究工作主要是一些互不联系的应用,还没有形成统一的理论。 根据选址模型的目标函数、约束条件、决策空间、模型参数和 所覆盖的时间周期的不同,选址模型具有以下 5 个结构特点: (1)设施的数量:单设施或多设施; (2)设施能力:有无能力限制; (3)连续或离散的决策空间:设施可以在被研究区域内任意点定位还是只能在有限数量的离散位置被定位; (4)参数性质:问题的参数是随机的还是确定性的; (5)模型性质:模型是静态的还是动态的。 以往的研究人员已经提出了多种模型来解决公众和私
3、有设施选址问题。在私有设施选址问题中,最受关注的问题是仓库或生产中心选址问题:面在公众选址问 题中,最重要的应用则是紧急服务车辆和设施选址问题。典型的选址问题包括:网络设计、仓库选址、紧急服务设施覆盖问题和竟争性设施选址问题。 二、国外的研究与现状 ; 1.单目标模型 最简单的平面最小化问题是 Weber 问题,该问题假设一个设施被确定为一系列离散的需求地服务,并使得旅行最小。广义的 Weber问题有时也被称为仓库选址问题或选址 分配问题。 另一类选址问题的目标是最小化最大旅行时间或成本,这类问题中,比较典型的是 P个中心 (p-center)问题或绝对中心问题:在一个 一般网络中确定 p个设
4、施的位置,使得一系列离散的需求点与设施之间的最大 (加权或不加权 )距离最小。当设施的位置被限定在网络中的节点上时,该问题则成为顶点中心 (vertex center)问题:当 P=1 时,该问题被称为 Jordan 中心问题。 2.多目标模型 选址问题的多目标模型的早期研究主要集中于对实际问题的建模方面,问题的目标主要是考虑成本最小和满足需求,其中成本最小目标是最受研究人员关注的,绝大多数选址模型都考虑了选址问题的成本因素。满足需求的目标体现了以顾客为导向的服务理念,相应的模型描 述了系统在一定的服务水平下满足顾客需求的能力。这一目标的表达主要采用了覆盖模型和分配模型。 可以看到,近期对多目
5、标选址模型研究的重点,已经从对实际问题建模方面转移到对更一般化问题的建模和对算法的深入研究两个方面了。研究人员都倾向于采用更加复杂的技术,例如:混合整数线性规划、广义分配模型、模糊集合理论、距离范数等,从面使模型具有更加普遍的意义。 3.随机模型 随机模型使选址模型更加符合选址问题的实际情况,其研究方法主要分为两类:概率方法和情景计划方法。这两种方法的系统输入参数都是 不确定性的,包括:旅行时间、建设成本、需求位置和需求数量。目标是确定设施的位置使得系统的绩效最好。概率方法考虑模型中随机变量的概率分布,面情景计划方法则考虑了一系列变量的未来可能值。 1961年, Manne发表了第一篇考虑随机
6、输入参数的选址模型的文章,模型的目标是确定具有无限时间周期的设施的期望规模,使得设施建设折现总和最小。该模型表明:随着需求方差的增加和资金利率的降低,设施的期望最优规模将增大。 4.动态模型 系统的需求和成本项目会随着时间的推移面发生变化,即系统所处的外部是 动态变化的,因此,静态的选址模型根据现期数据所得到的解在未来的环境中可能是次优的。动态选址模型通过优化或近似优化的方法对跨时间周期的设施选址问题进行描述,此时的主要问题是如何在需求和成本变化的跨时间周期的规划期内对设施进行选址,使得总的长期成本最小。与静态模型相比,动态模型要考虑设施在不同时间周期的再选址成本。 Ballou 首先进行了动
7、态选址模型的研究,欲解决的问题是:确定一个仓库的位置,使得系统在有限的、跨时间周期的规划内获得最大利润。Ballou 的模型在目标函数中没有考虑时间结构和成本因素,面 Wesolowsky则在目标函数用一个 0-1整数变量将设施再选址成本考虑的进来,并采用结合分枝定界技术的枚举法求解模型的最优解。近期 Drezner对这个模型进行了进一步的修订,新的模型用期望成本替代了原来的给定成本,并将设施再选址的概率考虑了进来。 三、国内的研究与现状 国内开展选址模型研究的起步较晚,蔡希贤等于 20世纪 80年代中期对国外的一些经典的选址模型进行了介绍。与国外选址研究的发展历程不同,国内选址问题的模型研究
8、是从多目标选址问题开始的,这体现了国内选址问题的模型研究较好地吸收了国外相 关研究的先进成果,能够在一个较高的起点上开展进一步的工作。最初的多目标平面选址问题是无约束的,考虑了两个距离目标:欧几里德距离最小和绝对值距离最小。运用模拟退火算法对该完全的 NP 难题进行求解。随后,马良等又对有约束的多目标平面选址问题进行了研究,仍然采用模拟退火算法对模型进行求解。模拟退火算法虽然可以有效的求解此类问题,但是其运算效率非常低,面且最终解往往不一定是稳定解。因此,蒋良奎对他们的工作进行了改进,提出了一种将混沌优化方法与 Dixon算法相结合的混合算法,该算法可以克服模拟退火算法最终解收敛于局部最 优解
9、的缺陷,同时具有较快的收敛速度。 张显东等较早的对有竟争的单一设施选址问题进行了研究,研究的问题是:已有多个竟争性的供应商存在的情况下,新的供应商选址决策模型,目标是新进入的供应商获取最大的占有量。该模型为非线性规划问题,形式为无约束的极值问题。文章同时给出了求解模型的数值迭代方法:根据问题的一组参数得到备选地址的初始值;通过迭代过程得到新的备选地址;比较新的地址与原来的地址之间的误差是否满足允许误差的条件,如果满足则停止迭代,认为找到最优解;否则进行下一次迭代。肖华勇等注意到了张显东等人的工 作,因此对他们的模型进行了分析,推导了模型的求解过程,并用实际算例对模型进行了,从面发现了模型的不合
10、理性。除了市场占有率之外,利润也是竟争性选址决策的目标之一,孙元欣等研究了竟争性多设施选址问题,目标是使得原有设施与新增设施的利润之和最大。 由于国内选址模型研究的起点较高,所建立的模型一般都为 NP难题,因此,在求解模型的算法方面一般没有突破性的进展,主要采用遗传算法和模拟退火算法这两种启发式算法。 四、浅析我国水泥粉磨站的选址 亚泰集团是东北最大的水泥生产企业,国家第九大水泥企 业集团,年产水泥以及熟料 600万吨,粉磨站选址不仅能快速响应客户,节约成本,还能产生环境效益。因此该项目技术上可行,具有环境效益和经济效益。 根据生产水泥的工艺流程,水泥生产的特点是把石灰石和粘土等混合锻烧形成熟
11、料,水泥熟料是介于原矿石与水泥产成品之间的中间产品,是生产水泥的半成品。这一过程消耗了水泥生产所需的石灰石、煤炭和水泥生产约 70%的电耗,水泥熟料通过在粉磨站添加 12% 30%的掺合,通过高速粉磨设备形成水泥最终产品。因此,从水泥产销的特点出发,在石灰石资源丰富的地区建设熟料生产工厂:在无 资源、市场发达地区建设粉磨站,就地生产水泥最终产品的战略可以大大降低水泥生产和销售过程中的运输成本,使产品销售半径覆盖范围扩大,为企业可持续发展奠定了坚实的基础。 参考文献 1马良:多目标平而选址问题的模拟退火算法,系统土程理论与实践 1997 年 3月。 2蒋良奎:平而选址问题的一种混合算法,上海海运
12、学院学报1999 年 2 月。 3张显东、梅广清、张学兵等:市场竟争条件下的供应商选址模型研究,运筹与 1998 年 7月。 4肖华勇、田 铮、师义民:多供应商条件下选址模型的一个研究结果运筹与管理,运筹与管理 2000 年 9月。 5孙元欣、黄培清:竟争型连锁经营网点选址模型与遗传算法解,科学学与科学技术管理 2001 年 10月。 6刘海燕、李宗平、叶怀珍:物流配送中心选址模型,西南大学学报 2000 年 5月。 7黎青松、衰庆达、杜文:一个结合库存策略的物流选址模型,西南交通大学学报 2000 年 3 月。 8常玉林、王炜:城市紧急服务系统优化选址模型,系统工程理论与实践 2000 年 2月。