如果存在某个邻域,使方程(1)的解x(t)从这个邻域内的某个x(0)出发,满足(3)则称平衡点x0是稳定的(稳定性理论中称渐进稳定);否则,称x0是不稳定的(不渐进稳定).判断平衡点x0是否稳定通常有两种方法.利用定义即(3)式称间接法.不求方程(1)的解x(t),因而不利用(3)式的方法称直接法.下面介绍直接法.1将f(x)在x0点作Taylor展开,只取一次项,方程(1)近似为(4)(4)称为(1)的近似线性方程,x0也是方程(4)的平衡点.关于x0点稳定性有如下结论:若f(x0)0,则x0对于方程(4)和(1)都是不稳定的.2注:x0点对方程(4)稳定性很容易由定义(3)证明:记f(x0)=a,则(4)的一般解为x(t)=ceat+x0(5)其中常数c由初始条件确定,显然,a 0时(3)式成立.3 二阶方程的平衡点和稳定性二阶方程可用两个一阶方程表为(6)右端不显含t,是自治方程.代数方程组(7)的实根x1=x10,x2=x20称为方程(6)的平衡点,记作P0(x10,x20).4如果存在某个邻域,使方程(6)的解x1(t),x2(t)从这个邻域内的某个(x1(0),x2(0)出