匀变速直线运动与等差数列.doc

上传人:gs****r 文档编号:1691037 上传时间:2019-03-11 格式:DOC 页数:4 大小:104KB
下载 相关 举报
匀变速直线运动与等差数列.doc_第1页
第1页 / 共4页
匀变速直线运动与等差数列.doc_第2页
第2页 / 共4页
匀变速直线运动与等差数列.doc_第3页
第3页 / 共4页
匀变速直线运动与等差数列.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、1匀变速直线运动与等差数列摘要:从匀变速直线运动的位移公式出发,从一般的情况入手,对它们做恰当的数学处理就可以构造出一系列的等差数列,它与初速度和加速度的具体值的大小无关,事实上也与初速度和加速度的方向无关。但是当仅考虑具体问题的计算时,所得的值是依赖于初速度和加速度的。关键词:匀变速直线运动;位移公式;等差数列 中图分类号:G424.1 文献标志码:A 文章编号:1674-9324(2014)19-0103-02 对高中学生及大学理科学生来说,数学和物理是相对较难掌握的学科,相对而言,高中教学、大学理科教学中数学、物理是花时较多,而成绩提高较为困难的学科,作为教师来说,怎样改变这种状况呢?我

2、采用用物理材料构建数学知识,用数学知识解决物理问题的方法实施教学,效果较好,现以匀变速直线运动与等差数列举例如下。 一、用匀变速直线运动的位移公式构造等差数列 我们知道,在物理中,若物体做匀变速直线运动,设初速度为 V,加速度 a,则 t 时刻物体的位移为:S=Vt+at2。如果我们考虑前一秒内、前二秒内、前三秒内、前四秒内前 n 秒内的位移,则它们分别为:V+a、2V+a、3V+a、4V+a、nV+a;如果我们考虑第一秒内,第二秒内,第三秒内,第四秒内第 n 秒内的位移,2则它们分别为:V+a、V+a、V+a、V+aV+a,从数学的观点来分析上述数列an,我们将第 n 项记为 an,则有 a

3、n=V+a。因为:an+1-an=V+a-(V+a)=a,所以它们构成了首项为a1=V+a,公差为 d=a(注意,从物理的观点看,这里 d 和 a 的仅是数值上相等) ,通项公式为 an=V+a 的等差数列。其中第 n 项的含义为做匀变速直线运动的物体在第 n 秒内发生的位移。数列an的前 n 项和,我们利用等差数列的前 n 项和公式,公式中,a1=V+a,d=a 则:sn=n=v0 n+an2an=a1+(n-1)d。其含义则为物体在前 n 秒内发生的位移,所得结论与物理教材上的结论完全一致(这时,t=n) 。事实上,如果我们选取的时间间隔为固定值 t,并来讨论物体在前 t 秒内、前2t 秒

4、内、前 3t 秒内、前 4t 秒内、前 nt 秒内的位移,则它们分别为:Vt+a(t)2、2Vt0+a(t)2、3Vt+a(t)2、4Vt+a(t)2、nVt+a(t)2,如果我们考虑第一个 t 秒内,第二个 t 秒内,第三个 t 秒内,第四个 t秒内、第 n 个 t 秒内的位移,则它们分别为:Vt+a(t)2、Vt+a(t)2、Vt+a(t)2、Vt+a(t)2、Vt+a(t),从数学的观点来分析上述数列bn,我们将第 n 项记为 bn,则有 bn=Vt+a(t)2,因为:bn+1-bn=Vt+a(t)2-(Vt+a) (t)2=a(t)2。所以它们构成了首项为 b1=Vt+a(t)2,公差

5、为 d=a(t),通项公式为bn=Vt+a(t)2 的等差数列。其中第 n 项的含义为做匀变速直线运动的物体在第 n 个 t 秒内发生的位移。物理学家伽利略在研究落体3运动的规律(它是匀变速直线运动的一个特例)时,曾假设物体速度的变化对时间来说是均匀的,并通过数学推理和实验研究得出匀变速直线运动的运动规律。通过我们上面的计算,我们发现做匀变速直线运动的物体,相连的单位时间内后一个时间比前一个时间增加的位移是相同的,其值为 a(t)2,如果单位时间取 t=1 秒,则相连的单位时间内后一个时间比前一个时间增加的位移仅就数值上来说即为 a,由于 a(t)是位移的差值,所以单位与位移的单位相同,所以

6、a 的单位仍是 m/s,这是加速度的另一个物理意义。同时说明位移对时间来说是均匀增加的。同样对于数列bn的前 n 项和,因为,b1=V0+a,bn=V0t+a(t)2,d=a(t)2 则:sn=n=nV0t+an2(t)2an=a1+(n-1)d,其和为前 nt 时间内的位移,我们令 t=nt,则我们同样可以可得到 sn=V0t+at2,仍然与前述的物理教材上的结论一致。我们用等差数列的知识理解了匀变速直线运动的知识,又用等差数列的知识处理了匀变速直线运动中的位移问题。同时,对等差数列的通项公式,前 n 项和公式及应用也有了进一步的熟悉和了解。在这里,物理知识构成了数学知识的素材,数学知识则变

7、成了解决物理问题的工具。物理知识与数学知识的紧密关系在此例子中得到了深刻的体现。 二、几个推论 1.初速度为 0 的匀变速直线运动的第一秒内、第二秒内、第三秒内、第四秒内、第 n 秒内的位移的比是 1357(2n-1) 。证明:因为 an=V0+a,根据题意 V0=0,所以 a1=a、a2=a、a3=a、a4=a、an=a,所以 a1a2a3a4:an=aaaa4a=1357。所以初速度为 0 的匀变速直线运动的第一秒内、第二秒内、第三秒内、第四秒内、第 n 秒内的位移的比是1357:(2n-1) 。 2.初速度为 0 的匀变速直线运动的前一秒内、前二秒内、前三秒内、前四秒内、前 n 秒内的位

8、移的比为 14916n2 证明:我们可以将一般匀变速直线运动的前一秒内、前二秒内、前三秒内、前四秒内、前 n 秒内的位移 V0+a、2V0+a、3V0+a、4V0+a、nV0+a 所构成的数列记为cn,则 cn=nV0+a,又知 V0=0。所以c1=a、c2=a、c3=a、c4=a、cn=a,所以c1c2c3c4cn=14916n2。所以初速度为 0 的匀变速直线运动的前一秒内、前二秒内、前三秒内、前四秒内、前 n 秒内的位移的比为 14916n2。 综上所述,我们从讨论的匀变速直线运动的位移公式出发,从一般的情况入手,对它们做恰当的数学处理就可以构造出一系列的等差数列,它与初速度和加速度的具体值的大小无关,事实上也与初速度和加速度的方向无关。但是当仅考虑具体问题的计算时,所得的值是依赖于初速度和加速度的。正如以上的推论,当初速度为 0 且仅计算比值时,则所得结论与加速度的大小也无关,这都充分说明匀变速直线运动规律的普遍性。 作者简介:张荣登(1966-) ,男,大学本科,毕业于云南师范大学数学与应用数学专业,现从事教学与管理工作。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 学术论文资料库 > 学科论文

Copyright © 2018-2021 Wenke99.com All rights reserved

工信部备案号浙ICP备20026746号-2  

公安局备案号:浙公网安备33038302330469号

本站为C2C交文档易平台,即用户上传的文档直接卖给下载用户,本站只是网络服务中间平台,所有原创文档下载所得归上传人所有,若您发现上传作品侵犯了您的权利,请立刻联系网站客服并提供证据,平台将在3个工作日内予以改正。