1、2.12 有一薄透镜组,由焦距为300mm 的负透镜和焦距为 200mm 的正透镜组成,两透镜相距 100mm,置于空气中,求该透镜组的组合焦距和组合基点位置。解: 1212302ff md焦点和主点位置: 1()4Flf250lfHFm1lf2.17 若有一透镜位于空气中,r 1= 100mm,d= 8mm,n = 1.5,若有一物体的物距 l = 200mm,经该透镜成像后的像距 l= 50mm,求第二面的曲率半径 r2。若物高 y = 20mm,求像高。解:由成像公式 ,可得 1lf40fm又 12()nrf d故可得 25rm由于 ,所以ly53.2 一眼睛,其远点距 r = 2m,近
2、点距 p =2m。问:(1)该眼镜有何缺陷?(2)该眼睛的调节范围为多大?(3)矫正眼镜的焦距为多大?(4)配戴该眼镜后,远点距和近点距分别为多大?解:(1)远点 r = 2m,只有入射会聚光束,且光束的会聚点距离眼睛后 2m 才能在视网膜上形成一个清晰的像点,故此眼睛为远视眼(2)调节范围: 11ARPDrp(3)对远视眼应校正其近点,正常人眼明视距离 L0=25cm,远视眼近点为lp。戴上眼镜后,将其近点移至 L0 处1pnLlf012nLf所带眼镜屈光度为,故02pPlf2.9fm(4)p = 0.25m 故 r = 4.67m1ADrp一束右旋圆偏振光(迎着光的传播方向看)从玻璃表面垂
3、直反射出来,若迎着反射光的方向观察,是什么光?解:选取直角坐标系如图(a)所示,玻璃面为 xOy 面,右旋圆偏振光沿 z 方向入射,在xOy 面上入射光电场矢量的分量为: )cos(tAEix2y所观察到的 入射光电场矢量的端点轨迹 如图(b)所示。根据菲涅耳 公式,玻璃面上的反射光相 对于入射面而言有一 相位 突变,因此反射光的电场矢 量的分量为:)cos()cos(tAtAErx 22ry其旋向仍然是由 y 轴旋向 x 轴,所以迎着反射光的传播方向观察时,是左旋圆偏振光。一束振动方位角为 45的线偏振光入射到两种介质的界面上,第一介质和第二介质的折射率分别为 n11 和 n21.5 。当入
4、射角为 50时,试求反射光的振动方位角。解: ,由折射定律: 501 51.0sii2230.7 3.7.80sin19)sin(21r O057.8tan319)tan(21pr 8.4t.tt ipsr反射光的振动方位角为: 3.0r一束自然光以 70角入射到空气玻璃(n1.5)分界面上,求其反射率和反射光的偏振度。解:由题意有 ,701根据折射定律: 625.0sini21 238. 5.0.1sin)sin(21 r30srR21.8.1tan)tan(21pr04pr反射率为: 7.)(22snrR反射光的偏振度为: %6.7401.325.sprRP在杨氏实验中,两小孔距离为 1
5、mm,观察屏离小孔的距离为 100 cm,当用一折射率为 1.58 的透明薄片贴住其中一小孔时,发现屏上的条纹系移动了 1.5 cm,试决定该薄片的厚度。解: 02S1Dy如图,设 P0 点是 S1S2 连线的垂直平分线与屏的交点,则当小孔未贴上薄片时,由两小孔 S1 和 S2 到屏上 P0 点的光程差为 0。当贴上薄片时,零程差点由 P0 移到与之相距 1.5 cm 的 P 点,P 点光程差的变化量为: 15.mydD而 P 点光程差的变化等于 S1 到 P 的光程的增加: (1)0.5nh薄片厚度为: 20.5.9m18h假设照射迈克尔逊干涉仪的光源发出两种波长的单色光(设 ) 。因此当平
6、面镜 M121移动时,条纹将周期性的消失和再现。设 表示条纹相继两次消失 M1 移动的距离,h,试证明:2121h证明:当两波长形成的亮条纹重合时,条纹亮度最好,而当 的暗条纹与 的暗条纹重12合时,条纹消失,则当条纹消失时光程差满足: 122()()hm式中 表示光束在半反射面上反射时的附加光程差,未镀膜时为 2则由上式得: 212112hm当 h 增加 时,条纹再次消失,这时干涉级之差增加 1,即:2112()两式相减,得: hFP 干涉仪常用来测量波长相差较小的两条谱线的波长差。设干涉仪两板的间距为0.5mm,它产生的 谱线的干涉环系中第二环和第五环的半径分别为 3mm 和 5mm, 谱
7、1 2线的干涉环系中第二环和第五环的半径分别为 3.2mm 和 5.1mm,两谱线的平均波长为550nm,试决定两谱线的波长差。解:设对 谱线的干涉环系中心的干涉级数为 ,则有: (1)10m02mh其中 表示光束在板面金属膜上反射时的附加光程差: , 为在金属膜上反 1射的相变。若 非整数,则写为:0m010表示靠中心第一个亮环的干涉级数,由中心向外,第 N 个亮环的干涉级数为1,而它的角半径由下式求出: )(N )1(cos21mh与(1)式相减,得: 11)()cos1(2hN 一般很小,故有:N2 )1(12h第五环和第二环的半径平方之比为: 11254r 786.03542251 r
8、同理, 谱线干涉环系中心的干涉级数的小数部分:2948.0)2.3(1.54252 r由(1)式, 2211212 )()()( hhhm nmh3912 09.4)786.04.(05.)()( 波长为 500nm 的平行光垂直照射在宽度为 0.025mm 的单缝上,以焦距为 50cm的会聚透镜将衍射光聚焦于焦面上观察,求(1)衍射图样中央亮条纹的半宽度;(2)第二暗纹到中央亮纹的距离;解:(1)中央亮纹的半角宽度为:rad02.5.1060a中央亮纹的半宽度为: cm102.50fe(2 )第二暗纹的位置对应于 ,即:sin2ka rad6501rcirciarcsin0.4.第一亮纹到中
9、央亮纹的距离为:cm.4qfe钠黄光垂直照射一光栅,它的第一级光谱恰好分辨开钠双线( nm,5891nm) ,并测得 589nm 的第一级光谱线所对应的衍射角为 2,第四级6.5892缺级,试求光栅的总缝数,光栅常数和缝宽。解:光栅的分辨本领为: mNA其中 nm3.58926.589光栅的总缝数为: 982)56.(138第一级光谱满足: sind光栅常数为: mm07.2si.59i6第四级缺级缝宽为: mm04.da用波长为 624nm 的单色光照射一光栅,已知该光栅的缝宽 mm,不透明部分宽012.a度 mm,缝数 N1000 条,试求:(1)中央极大值两侧的衍射极小值间,将出029.
10、b现多少个干涉主极大;(2)谱线的半角宽度。解:(1)中央峰两侧的衍射极小值满足: sin中央峰内的衍射角满足 asi干涉主极大满足: 0, 1, 2 mdn在中央峰内的干涉主极大满足: d 42.301.ad 的取值可为 0, 1, 2, 3m出现的干涉极小值个数为 7 个(2)谱线的角宽度为:rad56102.)09.12.(04Nd当通过一检偏器观察一束椭圆偏振光时,强度随着检偏器的旋转而改变,当在强度为极小时,在检偏器前插入一块 1/4 波片,转动 1/4 波片使它的快轴平行于检偏器的透光轴,再把检偏器沿顺时针方向转动 25就完全消光,问该椭圆偏振光是左旋还是右旋,椭圆长短轴之比是多少
11、?解:椭圆偏振光可以看作是一个光矢量沿长轴方向的线偏振光和一个位相相差 /2 的光矢量沿短轴方向的线偏振光的合成。即: 2xy如图,设短轴方向为 x 轴,长轴方向为 y 轴。因此,当转动检偏器,使之透光轴平行于 x 轴时,强度最小。由题意,插入快轴沿 x 轴的 1/4 波片后,透射光为线偏振光,振动方向与 x 轴成 65,此时01y快轴沿 x 轴的 1/4 波片产生的相位差:22y椭圆偏振光的初始位相差 21xy表示右旋椭圆偏振光,由图可知,椭圆长轴和短轴之比为: 145.26tgAxy一束波长为 2 = 0.7605m 左旋正椭圆偏振光入射到相应于 1 = 0.4046m 的方解石 1/4
12、波片上,试求出射光束的偏振态。已知方解石对 1 光的主折射率为 no = 1.6813,n e = 1.4969;对 2 光的主折射率为 , 。o.652ne.4836n解:由题意,给定波片对于 1 = 0.4046m 的光为 1/4 波片,波长为 1 的单色光通过该波片时,两正交偏振光分量的相位差为 1oe2()2nd该波片的厚度为 1oe4()dn波长为 2 = 0.7605m 的单色光通过该波片时,两正交偏振光分量的相位差为X65Y2透 过 波 片线 偏 振 光检 偏 器透 光 轴12oeoe2oe()()0.244()ndnn因此,对于 2 = 0.7605m 的单色光,该波片为 1/8 波片。由于入射光为左旋正椭圆偏振光,相应的两正交振动分量相位差 ,0/2通过波片后,该两分量又产生了附加相位差 ,所以,两出射光的总2/4相位差为 024因此,出射光仍然是左旋椭圆偏振光,其主轴之一位于 I、III 象限内。