1、1浅谈分层教学在“相似三角形”教学中的尝试【摘要】 学生在学习过程中存在不可避免的个体差异,为了让各类学生都学有收获,尝试在课堂教学中进行分层教学:在同一问题中挖掘不同难度的问题尝试分层教学,在同一类基本图形下不同变式图形的分层教学尝试,同一问题背景下改动条件进行分层教学的尝试. 【关键词】 分层教学;相似;基本图形 “图形的相似”是八年级下学生学习的章节. 这一章的内容比前面的几何内容不管是在思维广度还是思维深度,对学生都提出了更高的要求. 它是全等的“一般化” ,对两图形的约束条件从等角等边到等角、边成比例. 从完全一样的两个图形到形状一样的两个图形,单单从图形上就更难辨析出来.所以学生在
2、学这一章节的时候,往往觉得有些吃力. 中等学生觉得题目千变万化,有些头绪不清;基础薄弱的学生就觉得无从下手,痛苦万分;而优等生又觉得有些意犹未尽,有点“吃不饱”的感觉. 为了解决这一矛盾,让各类学生在学习这一内容的时候都有所收获,我尝试着在课堂教学中实施分层教学. 因为受课堂教学空间和时间的限制,不可能在同一时间完全针对一类学生进行有效的教学,所以我就想到,只有在教学模式和教学内容上做文章,进行调整.于是,我在具体课堂教学中进行了如下的尝试. 1. 在同一问题中挖掘不同难度的问题尝试分层教学 这是教材安排在“相似三角形的基本性质”之后,用于巩固“相似2三角形对应高的比等于相似比”的典型例题.我
3、们可以从较为复杂的图形背景中找出AHGABC,证出结论. 本题中由正方形条件可以马上得到平行,而平行是构成相似三角形的最基本图形.如果再给出图中一些线段的长度,就可以把这个三角形的内接正方形的边长求出来,而这也是一个很基本的题型. 问题 1:如图 3,在ABC 中,BAC = 90,正方形 DEFG 的四个顶点在ABC 的边上,连接 AG,AF 分别交 DE 于 M,N 两点. 分层问题 1:若 AB = AC = 1,直接写出 MN 的长. 这个问题可以让中下的学生思考.对引例中的三角形加强了条件,由原来的一般三角形变为等腰直角三角形.本题,要去证明DBG 和EFC是等腰直角三角形,再由正方
4、形的性质,可得 BG,GF,FC 三条线段等长,再利用引例中的结论可求出 MN 的长度. 分层问题 2:求证 MN2 = DM?EN. 这个分层问题由中上的学生思考回答.题中,还是在BDG,EFC 这两个三角形上做文章,不过是要证明它们相似,得到 BG,DG,EF,FC 这四条线段的一个等积关系,再利用正方形四条边相等和引例中的结论,等量代换即可得证. 在一个大题的背景下,通过设置不同难度层次的问题,让不同层次的学生有针对性地思考,既避免问题太难让部分基础差的学生产生畏难情绪,也保证了部分优等生向思维深度发展.而且这两个问题本身也有一些联系,可以让全班学生在听了这两个分层小题的讲解后都有些许收
5、获,说不定会让部分中等学生得到一些启发,得到灵感. 32. 在同一类基本图形下不同变式图形的分层教学尝试 原例 2:如图 4,点 B,P,C 在同一条直线上,且ABP = APD = C = 90,我们可以得到结论:ABPPCD. 我们不妨把具备这种条件的图形叫作“一线三等角”型基本图形.本题把其中的三等角特殊化,让它们都为直角,难度降低,学生容易思考,可以利用余角定理证相似,便很容易得到结论. 分层问题 1:如图 5,在等边三角形 ABC 中,D 是 BC 边上一点,EDF = 60.求证:BDECFD. 这个分层问题由中下学生思考回答.把原例中的 3 个直角变换为 3 个60角,利用三角形
6、内角和 180的性质,得到BED = C,进而可证出相似.这个问题和原例相比,虽然图形形状略有不同,但同样具备一线三等角的条件,而且给出的是具体的度数,让中下的学生比较容易下手. 分层问题 2:如图 6,已知在梯形 ABCD 中,ADBC,AD BC,且 AD = 5,AB = CD = 2,P 为 AD 上一点,满足BPC = A. 求证:ABP DPC;求 AP 的长. 这个分层问题可以由中上等学生思考回答.这个问题就没有给出具体的度数,只是给出三个角相等的关系,但只要抓住本质,利用等式基本性质即可得到另一组相等的角. 通过这几个例题的讲解,其实不管这三个等角的具体的度数也好,还是锐角、直
7、角或者钝角也好,都能构造出一对相似三角形.只要抓住“一线三等角”这类基本图形的本质和特点,就能在更为复杂的图形中找到其中的相似,快速解题.下面再给出两张图形(图 7,图 8) ,都是与4一边的延长线有交点,可以检验学生是否掌握对“一线三等角”基本图形的识别. 3. 同一问题背景下改动条件进行分层教学的尝试 原例 3:如图 9,ABC 中,A,B 两个顶点在 x 轴的上方,点 C 的坐标是(-1,0).以点 C 为位似中心,在 x 轴的下方作ABC 的位似图形ABC,并把ABC 的边长放大到原来的 2 倍.设点 B 的对应点 B的横坐标是 a,则点 B 的横坐标是 原题是位似在坐标系下的一个应用
8、,因为位似中心并不在坐标系原点,所以对学生来讲还是有些困难.这个原题可以给中上等的学生思考回答. 为了让中下等学生也能感受一下位似在坐标系中的应用,我就把题目中的一个条件改了,就让点 C 成为坐标系的原点,其他条件不动(图10) ,学生也更容易入手解这个题目,很容易想到通过过点 B,B向 x 轴作垂线来解决.而一部分中上等的学生可能一开始也没什么思路,通过改动题的讲解,也容易打开思路,让这个改动题成了一个“脚手架” ,帮助一部分学生攀登更高处. 学生的个体差异性是客观存在的,如何在有限的课堂教学中,让更广泛的、不同层面的学生在课堂学习中能有收获,既体现了义务教育的公正公平,又体现了对每名学生负责,让他们在美好的青春期学到更多的知识、技能和方法,为终身学习打好坚实基础,这也是我们教师能量和作用的最大化释放,个人价值的最大化体现.但是同时对我们教师也提出了更高的要求,不仅要求我们教师在备课中要充分考虑各层次学生的5诉求,也要对原有的教育资源进行整合和再加工.但是不管如何辛苦,为了能更好地响应2011 年版数学课程标准的颁布和实施,让人人能获得良好的数学教育,不同的人在数学上得到不同的发展,我们做这些尝试是完全有必要的,中间过程一定会有失败和挫折,但在不断地改进下,肯定会做得越来越好.